Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-24T17:26:55.977Z Has data issue: false hasContentIssue false

Quartz replaced anhydrite nodules (‘Bristol Diamonds’) from the Triassic of the Bristol District

Published online by Cambridge University Press:  01 May 2009

Maurice E. Tucker
Affiliation:
Department of Geology, University of Newcastle upon Tyne, Newcastle NE1 7RU, U.K.

Summary

Quartz nodules and geodes, known as Bristol Diamonds, occur in the Triassic Dolomitic Conglomerate of the Bristol district of England. They are composed of either, megaquartz, milky in the outer part and clear towards the centre, or fibrous quartz, chalcedony and lutecite. Much of the quartz, particularly in the outer parts, is full of anhydrite inclusions which are relics of larger lath-shaped anhydrite crystals. The Bristol Diamonds formed by silica replacement of anhydrite nodules, with replacement proceeding from the outside inwards. In many cases anhydrite solution was faster than silica replacement, so that a central void developed into which grew crystals with fine terminations. The anhydrite formed by precipitation of sulphate from hypersaline sediment-porewaters, probably in a marginal playa situation.

Type
Articles
Copyright
Copyright © Cambridge University Press 1976

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arthurton, R. S. & Hemingway, J. E. 1972. The St Bees evaporites – a carbonate evaporite formation of upper Permian age in West Cumberland, England. Proc. Yorks. geol. Soc. 38, 565–92.CrossRefGoogle Scholar
Audley-Charles, M. G. 1970. Triassic palaeogeography of the British Isles. Q. Jl geol. Soc. Lond. 156, 4990.CrossRefGoogle Scholar
Bathurst, R. G. C. 1971. Carbonate Sediments and Their Diagenesis. 620 pp. Elsevier, Amsterdam.Google Scholar
Bradshaw, R. 1968. Bristol Diamonds. Proc. Bristol Nat. Soc. 31, 439–50.Google Scholar
Butler, G. P. 1970. Holocene gypsum and anhydrite of the Abu Dhabi Sabkha, Trucial Coast; an alternative explanation of origin. In Rau, J. L. & Dellwig, L. F., (Eds): Proc. 3rd Symp. on Salt, pp. 120–52.Google Scholar
Chowns, T. M. & Elkins, J. E. 1974. The origin of quartz and cauliflower cherts through the silicification of anhydrite nodules. J. sedim. Petrol. 44, 885903.Google Scholar
Etheridge, R. 1870. On the geological position and geographical distribution of the Reptilian or Dolomitic Conglomerate of the Bristol area. Q. Jl geol. Soc. Lond. 26, 174–91.CrossRefGoogle Scholar
Folk, R. L. & Pittman, J. S. 1971. Length-slow chalcedony: a new testament for vanished evaporites. J. sedim. Petrol. 41, 1045–58.Google Scholar
Green, G. W. & Welch, F. B. A. 1965. Geology of the country around Wells and Cheddar. Mem. geol. Surv. U.K.Google Scholar
Holliday, D. W. 1968. Early diagenesis in Middle Carboniferous nodular anhydrite of Spitzbergen. Proc. Yorks. geol. Soc. 66, 277–92.CrossRefGoogle Scholar
Kendall, A. C. & Tucker, M. E. 1973. Radiaxial fibrous, calcite: a replacement after acidular carbonate. Sedimentology 20, 365–89.CrossRefGoogle Scholar
Kinsman, D. J. J. 1969. Modes of formation, sedimentary association and diagnostic features of shallow-water and supratidal evaporites. Bull. Am. Ass. Petrol. Geol. 53, 830–40.Google Scholar
Llewllyn, P. G. & Stabbins, R. 1970. The Hathern Anhydrite Series, Lower Carboniferous, Leicestershire, England. Trans. Inst. Min. Metall. (B) 79, B1B14.Google Scholar
Maiklem, W. R., Bebout, D. G. & Glaister, R. P. 1969. Classification of anhydrite – a practical approach. Bull. Can. Petrol. Geo. 17, 194233.Google Scholar
Nickless, E. F. P., Booth, S. J. & Mosley, P. N. 1975. Celestite deposits of the Bristol area. Trans. Inst. Min. Metall. (B) 84, B62B64.Google Scholar
Pettijohn, F. J. 1975. Sedimentary Rocks, 3rd ed., 628 pp. Harper & Row, New York.Google Scholar
Schreiber, B. C. 1974. Vanished evaporites: revisited. Sedimentology 21, 329–31.CrossRefGoogle Scholar
Shearman, D. J. & Fuller, J. G. 1969. Anyhdrite diagenesis, calcitisation and laminites, Winnipegosis Formation, Middle Devonian Saskatchewan. Bull. Can. Petrol. Geol. 17, 496525.Google Scholar
Siedlecka, A. 1972. Length-slow chalcedony and relics of sulphates; evidence of evaporitic environments in the Upper Carboniferous and Permian beds of Bear Island, Svalbard, J. sedim. Petrol. 42, 812816.Google Scholar
Stoddart, W. W. 1877. Geology of the Bristol coalfield. 5. The Triassic Period. Proc. Bristol. Nat. Soc. 5, (N.S.), 3947.Google Scholar
Tucker, M. E. 1974. Exfoliated pebbles and sheeting in the Triassic. Nature, Lond. 252, 375–6.CrossRefGoogle Scholar
Tucker, M. E. & Kendall, A. C. 1973. The diagenesis and low-grade metamorphism of Devonian styliolinid-rich pelagic carbonates from West Germany: possible analogues of Recent pteropod oozes. J. sedim. Petrol. 43, 672–87.Google Scholar
Whittaker, A. 1972. The Somerset saltfield. Nature, Lond. 238, 265–6.CrossRefGoogle Scholar
Woodward, H. B. 1876. Geology of the East Somerset and the Bristol Coalfields. Mem. geol. Surv. U.K.Google Scholar