Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T03:08:27.595Z Has data issue: false hasContentIssue false

P–T evolution and timing of a late Palaeozoic fore-arc system and its heterogeneous Mesozoic overprint in north-central Chile (latitudes 31–32°S)

Published online by Cambridge University Press:  16 August 2011

ARNE P. WILLNER*
Affiliation:
Institut für Geologie, Mineralogie & Geophysik, Ruhr-Universität, D-44780 Bochum, Germany Institut für Mineralogie und Kristallchemie, Universität Stuttgart, Azenbergstr. 18, D-70174 Stuttgart, Germany
HANS-JOACHIM MASSONNE
Affiliation:
Institut für Mineralogie und Kristallchemie, Universität Stuttgart, Azenbergstr. 18, D-70174 Stuttgart, Germany
UWE RING
Affiliation:
Department of Geological Sciences, University of Canterbury, Christchurch, New Zealand
MASAFUMI SUDO
Affiliation:
Institut für Geowissenschaften, Universität Potsdam, Karl-Liebknechtstr. 24, D-14476 Potsdam, Germany
STUART N. THOMSON
Affiliation:
Department of Geosciences, University of Arizona, 1040 E. 4th St., Tucson, AZ 85721-0077, USA
*
Author for correspondence: [email protected]

Abstract

In the late Palaeozoic fore-arc system of north-central Chile at latitudes 31–32°S (from the west to the east) three lithotectonic units are telescoped within a short distance by a Mesozoic strike-slip event (derived peak P–T conditions in brackets): (1) the basally accreted Choapa Metamorphic Complex (CMC; 350–430°C, 6–9 kbar), (2) the frontally accreted Arrayán Formation (AF; 280–320°C, 4–6 kbar) and (3) the retrowedge basin of the Huentelauquén Formation (HF; 280–320°C, 3–4 kbar). In the CMC, Ar–Ar spot ages locally date white-mica formation at peak P–T conditions and during early exhumation at 279–242 Ma. In a local garnet mica-schist intercalation (570–585°C, 11–13 kbar) Ar–Ar spot ages refer to the ascent from the subduction channel at 307–274 Ma. Portions of the CMC were isobarically heated to 510–580°C at 6.6–8.5 kbar. The age of peak P–T conditions in the AF can only vaguely be approximated at ≥ 310 Ma by relict fission-track ages consistent with the observation that frontal accretion occurred prior to basal accretion. Zircon fission-track dating indicates cooling below ~ 280°C at ~ 248 Ma in the CMC and the AF, when a regional unconformity also formed. Ar–Ar white-mica spot ages in parts of the CMC and within the entire AF and HF point to heterogeneous resetting during Mesozoic extensional and shortening events at ~ 245–240 Ma, ~ 210–200 Ma, ~ 174–159 Ma and ~ 142–127 Ma. The zircon fission-track ages are locally reset at 109–96 Ma. All resetting of Ar–Ar white-mica ages is proposed to have occurred by in situ dissolution/precipitation at low temperature in the presence of locally penetrating hydrous fluids. Hence syn- and postaccretionary events in the fore-arc system can still be distinguished and dated in spite of its complex heterogeneous postaccretional overprint.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguirre, L., Hervé, F. & Godoy, E. 1972. Distribution of metamorphic facies in Chile: an outline. Krystallinikum 9, 719.Google Scholar
Arancibia, G. 2004. Mid-Cretaceous crustal shortening: evidence from a regional-scale ductile shear zone in the Coastal Range of central Chile (32°S). Journal of South American Earth Sciences 17, 209–26.CrossRefGoogle Scholar
Berman, R. G. 1988. Internally-consistent thermodynamic data for minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2. Journal of Petrology 29, 445522.CrossRefGoogle Scholar
Berman, R. G. 1990. Mixing properties of Ca-Mg-Fe-Mn garnets. American Mineralogist 75, 328–44.Google Scholar
Brown, T. H., Berman, R. G. & Perkins, E. H. 1989. Ge0-Calc: Software package for calculation and display of pressure-temperature-composition phase diagrams using an IBM or compatible Personal Computer. Computers & Geoscience 14, 279–89.CrossRefGoogle Scholar
Brix, M. R., Stöckhert, B., Seidel, E., Theye, T., Thomson, S. N. & Küster, M. 2002. Thermobarometric data from a fossil zircon partial annealing zone in high pressure-low temperature rocks of eastern and central Crete, Greece.Tectonophysics 349, 309–26.CrossRefGoogle Scholar
Connolly, J. A. D. 1990. Multivariable phase diagrams; an algorithm based on generalized thermodynamics. American Journal of Science 290, 666718.CrossRefGoogle Scholar
Connolly, J. A. D. 2005. Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth and Planetary Science Letters 236, 524–41.CrossRefGoogle Scholar
Charrier, R., Pinto, L. & Rodríguez, M. P. 2007. Chapter 3 Tectonostratigraphic evolution of the Andean orogen in Chile. In The Geology of Chile (eds Moreno, T. & Gibbons, W.), pp. 21114. London: The Geological Society.CrossRefGoogle Scholar
Dale, J., Powell, R., White, R. W., Elmer, F. L. & Holland, T. J. B. 2005. A thermodynamic model for Ca–Na clinoamphiboles in Na2O–CaO–FeO–MgO–Al2O3–SiO2–H2O–O for petrological calculations. Journal of Metamorphic Geology 23, 771–91.CrossRefGoogle Scholar
Evans, B. W. 1990. Phase relations of epidote-blueschists. Lithos 24, 323.CrossRefGoogle Scholar
Galbraith, R. F. 1990. The radial plot: graphical assessment of spread in ages. Nuclear Tracks and Radiation Measurements 17, 207–14.CrossRefGoogle Scholar
Galbraith, R. F. & Laslett, G. M. 1993. Statistical models for mixed fission-track ages. Nuclear Tracks 21, 459–70.Google Scholar
Glodny, J., Echtler, H., Figueroa, O., Franz, G., Gräfe, K., Kemnitz, H., Kramer, W., Krawczyk, C. M., Lohrmann, J., Lucassen, F., Melnick, D., Rosenau, M. & Seifert, W. 2006. Long-term geological evolution and mass-flow balance of the South-Central Andes. In The Andes – Active Subduction Orogeny (eds Oncken, O., Chong, G., Franz, G., Giese, P., Götze, H.-J., Ramos, V., Strecker, M. & Wigger, P.), pp. 401–28. Springer.CrossRefGoogle Scholar
Glodny, J., Lohrmann, J., Echtler, H., Gräfe, K., Seifert, W., Collao, S. & Figueroa, O. 2005. Internal dynamics of a paleoaccretionary wedge: insights from combined isotope tectonochronology and sandbox modelling of the south-central Chilean fore-arc. Earth and Planetary Science Letters 231, 2339.CrossRefGoogle Scholar
Godoy, E. 1984. Reflexiones acerca de transiciones metamorficas en el basamento de Chile central-sur. Revista Geológica de Chile 23, 7986.Google Scholar
Godoy, E. & Charrier, R. 1991. Antecedentes mineralogicos para el origen de las metabasitas y metacherts del Complejo Metamórfico del Choapa (Región de Coquimbo, Chile): un prisma de acreción Palaeozoico Inferior. Actas 6. Congreso Geológico Chileno, 410–14.Google Scholar
González Bonorino, F. 1971. Metamorphism of the crystalline basement of central Chile. Journal of Petrology 12, 149–75.CrossRefGoogle Scholar
Green, P. F., Duddy, I. R., Laslett, G. M., Hegarty, K. A., Gleadow, A. J. W. & Lovering, J. F. 1989. Thermal annealing of fission-tracks in apatite 4. Quantitative modelling techniques and extension to geological timescales. Chemical Geology 79, 155–82.Google Scholar
Holland, T. J. B. & Powell, R. 1998. An internally consistent thermodynamic data set for phases of petrological interest. Journal of Metamorphic Geology 16, 309–43.CrossRefGoogle Scholar
Holland, T. J. B. & Powell, R. 2003. Activity-composition relations for phases in petrological calculations: an asymmetric multicomponent formulation. Contributions to Mineralogy and Petrology 145, 492501.CrossRefGoogle Scholar
Hervé, F. 1988. Late Palaeozoic subduction and accretion in Southern Chile. Episodes 11, 183–8.CrossRefGoogle Scholar
Hervé, F., Faúndez, V., Calderón, M., Massonne, H.-J. & Willner, A. P. 2007. Metamorphic and plutonic basement complexes. In The Geology of Chile (eds Moreno, T. & Gibbons, W.), pp. 519. London: The Geological Society.CrossRefGoogle Scholar
Hurford, A. J. 1990. Standardization of fission-track dating calibration: recommended by the Fission-track Working Group of the I.U.G.S. Subcommission on Geochronology. Chemical Geology (Isotope Geoscience Section) 80, 171–8.CrossRefGoogle Scholar
Hurford, A. J. & Green, P. F. 1983. The zeta age calibration of fission-track dating. Isotope Geoscience 1, 285317.Google Scholar
Ishizuka, O., Yuasa, M. & Uto, K. 2002. Evidence of porphyry copper-type hydrothermal activity from a submerged remnant back-arc volcano of the Izu-Bonin arc: implication for the volcanotectonic history of back-arc seamounts. Earth and Planetary Science Letters 198, 381–99.CrossRefGoogle Scholar
Irwin, J. J., García, C., Hervé, F. & Brook, M. 1988. Geology of part of a long-lived dynamic plate margin: the coastal cordillera of north-central Chile, latitude 30°51′-31°S. Canadian Journal of Earth Sciences 25, 603–24.CrossRefGoogle Scholar
Kelley, S. P., Arnaud, N. O. & Turner, S. P. 1994. High spatial resolution 40Ar-39Ar investigations using an ultra-violet laser probe extraction technique. Geochimica Cosmochimica Acta 58, 3519–25.CrossRefGoogle Scholar
Leake, B. E., Wooley, A. R., Arps, C. E. S., Birch, W. D., Gilbert, M. C., Grice, J. D., Hawthorne, F. C., Kato, A., Kisch, H. J., Krivovichec, V. G., Linthout, K., Laird, J., Mandarino, J., Maresch, W. V., Nickel, E. H., Rock, N. M. S., Schumacher, J. C., Smith, D. C., Stephenson, N. C. N., Ungaretti, L., Whittaker, E. J. W. & Youzhi, G. 1997. Nomenclature of amphiboles. Report of the subcommittee on amphiboles of International Mineralogical Association Committee on New Minerals and Mineral Names. European Journal of Mineralogy 9, 623–51.CrossRefGoogle Scholar
Massonne, H.-J. 1995 a. Experimental and petrogenetic study of UHPM. In Ultrahigh Pressure Metamorphism (eds Coleman, R. G. & Wang, X.), pp. 3395. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Massonne, H.-J. 1995 b. P-T evolution of metavolcanics from the southern Taunus mountains. In Pre-Permian Geology of Central and Eastern Europe (eds Dallmeyer, R. D., Franke, W., & Weber, K.), pp. 132–7. Berlin-Heidelberg: Springer.CrossRefGoogle Scholar
Massonne, H.-J. 1997. An improved thermodynamic solid solution model for natural white-micas and its application to the geothermobarometry of metamorphic rocks. Geological Survey of Finland, Guide 46, Mineral equilibria and databases, Abstracts, 49.Google Scholar
Massonne, H. J. & Szpurka, Z. 1997. Thermodynamic properties of white-mica on the basis of high-pressure experiments in the systems K2O-MgO-Al2O3-Si2O-H2O and K2O-FeO-Al2O3-Si2O-H2O. Lithos 41, 229–50.CrossRefGoogle Scholar
Massonne, H.-J. & Willner, A. P. 2008. Phase relations and dehydration behaviour of psammopelite and mid-ocean ridge basalt at very-low-grade to low-grade metamorphic conditions. European Journal of Mineralogy 20, 867–9.CrossRefGoogle Scholar
McDougall, I. & Harrison, T. M. 1999. Geochronology and Thermochronology by the 40Ar/39Ar-Method. Oxford: Oxford University Press, 269 pp.CrossRefGoogle Scholar
McDowell, D. S. & Elders, W. A. 1980. Authigenic layer silicate minerals in borehole Elmore 1, Salton Sea Geothermal Field, California, USA. Contributions to Mineralogy and Petrology 74, 293310.CrossRefGoogle Scholar
Mpodozis, C. & Kay, S. M. 1992. Late Palaeozoic to Triassic evolution of the Gondwana margin: evidence from Chilean Frontal Cordilleran batholiths (28°S to 31°S). Geological Society of America Bulletin 104, 9991014.2.3.CO;2>CrossRefGoogle Scholar
Pankhurst, R. J., Millar, I. L. & Hervé, F. 1996. A Permo-Carboniferous U-Pb age for part of the Guanta unit of the Elqui-Limarí Batholith at Rio Transito, Northern Chile. Revista Geológica de Chile 23, 3542.Google Scholar
Parada, M. A., Lopez-Escobar, L., Oliveros, V., Fuentes, F., Morata, D., Calderón, M., Aguirre, L., Féraud, G., Espinoza, F., Moreno, H., Figueroa, O., Munoz Bravo, J., Troncoso Vásquez, R. & Stern, C. R. 2007. Chapter 4 Andean magmatism. In The Geology of Chile (eds Moreno, T. & Gibbons, W.), pp. 115–46. London: The Geological Society.CrossRefGoogle Scholar
Powell, R. & Holland, T. 1999. Relating formulations of the thermodynamics of mineral solid solutions: activity modeling of pyroxenes, amphiboles, and micas. American Mineralogist 84, 114.CrossRefGoogle Scholar
Rahn, M., Brandon, M., Batt, G. E. & Garver, J. I. 2004. A zero-damage model for fission-track annealing in zircon. American Mineralogist 89, 473–84.CrossRefGoogle Scholar
Ramírez-Sánchez, E., Deckart, K. & Hervé, F. 2007. Significance of 40Ar–39Ar encapsulation ages of metapelites from late Palaeozoic metamorphic complexes of Aysén, Chile. Geological Magazine 145, 389–96.CrossRefGoogle Scholar
Rebolledo, S. & Charrier, R. 1994. Evolución del basamento Palaeozoico en el área de Punta Claditas, Región de Coquimbo, Chile (31–32°S). Revista Geológica de Chile 21, 5569.Google Scholar
Reynolds, P. H., Barr, S. M. & White, C. E. 2009. Provenance of detrital muscovite in Cambrian Avalonia of Maritime Canada: 40Ar/39Ar ages and chemical compositions. Canadian Journal of Earth Sciences 46, 169–80.CrossRefGoogle Scholar
Richter, P., Ring, U., Willner, A. P. & Leiss, B. 2007. Structural contacts in subduction complexes and their tectonic significance: the Late Palaeozoic coastal accretionary wedge of central Chile. Journal of the Geological Society, London 164, 203–14.CrossRefGoogle Scholar
Ring, U., Willner, A. P., Layer, P. W. & Richter, P. P. 2011. Jurassic to Early Cretaceous postaccretional sinistral transpression in north-central Chile (latitudes 31–32° S). Geological Magazine, 149, 208220.CrossRefGoogle Scholar
Rivano, S. & Sepúlveda, P. 1983. Hallazgo de foraminíferos del Carbonífero Superior en la Formación Huentelauquén. Revista Geológica de Chile 19–20, 2535.Google Scholar
Rivano, S. & Sepúlveda, P. 1985. Las Calizas de la Formación Huenteauquén: Depósitos de aguas templadas a frías en el Carbonífero Superior-Pérmico Inferior. Revista Geológica de Chile 25–26, 2938.Google Scholar
Tagami, T., Galbraith, R. F., Yamada, R. & Laslett, G. M. 1998. Revised annealing kinetics of fission-tracks in zircon and geological implications. In Advances in Fission-Track Geochronology (eds Van den Haute, P. & De Corte, F.), pp. 99112. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
Thiele, R. & Hervé, F. 1984. Sedimentación y tectónica de antearco en los terrenos preandinos del Norte Chico, Chile. Revista Geológica de Chile 22, 6175.Google Scholar
Thomson, S. N. & Hervé, F. 2002. New time constraints for the age of metamorphism at the ancestral Pacific Gondwana margin of southern Chile (42–52° S). Revista Geológica de Chile 29, 255–71.CrossRefGoogle Scholar
Thomson, S. N. & Ring, U. 2006. Thermochronologic evaluation of postcollision extension in the Anatolide Orogen, western Turkey. Tectonics 25, TC3005, doi:10.1029/2005TC001833, 20 pp.CrossRefGoogle Scholar
Uto, K., Ishizuka, O., Matsumoto, A., Kamioka, H. & Togashi, S. 1997. Laser-heating 40Ar/39Ar dating system of the Geological Survey of Japan: system outlines and preliminary results. Bulletin of the Geological Survey of Japan 48, 2346.Google Scholar
Vásquez, P. & Franz, G. 2008. The Triassic Cobquecura Pluton (Central Chile): an example of a fayalite-bearing A-type intrusive massif at a continental margin. Tectonophysics 459, 6684.CrossRefGoogle Scholar
Villa, I. M. 1998. Isotopic closure. Terra Nova 10, 42–7.CrossRefGoogle Scholar
Willner, A. P. 2005. Pressure-temperature evolution of an Upper Palaeozoic paired metamorphic belt in Central Chile (34°-35°30′S). Journal of Petrology 46, 1805–33.CrossRefGoogle Scholar
Willner, A. P., Gerdes, A. & Massonne, H.-J. 2008. History of crustal growth and recycling at the Pacific convergent margin of South America at latitudes 29°-36°S revealed by a U-Pb and Lu-Hf isotope study of detrital zircon from late Palaeozoic accretionary systems. Chemical Geology 253, 114–29.CrossRefGoogle Scholar
Willner, A. P., Glodny, J., Gerya, T. V., Godoy, E. & Massonne, H.-J. 2004 a. A counterclockwise PTt-path in high pressure-low temperature rocks from the Coastal Cordillera accretionary complex of South Central Chile: constraints for the earliest stage of subduction mass flow. Lithos 75, 283310.CrossRefGoogle Scholar
Willner, A. P., Herve, F. & Massonne, H.-J. 2000. Mineral chemistry and pressure-temperature evolution of two contrasting levels within an accretionary complex in the Chonos Metamorphic Complex, Southern Chile. Journal of Petrology 41, 309–30.CrossRefGoogle Scholar
Willner, A. P., Wartho, J.-A., Kramm, U. & Puchkov, V. N. 2004 b. Laser 40Ar–39Ar ages of single detrital white-mica grains related to the exhumation of Neoproterozoic and Late Devonian high pressure rocks in the Southern Urals (Russia). Geological Magazine 141, 161–72.CrossRefGoogle Scholar
Willner, A. P., Sepúlveda, F. A., Hervé, F., Massonne, H.-J. & Sudo, M. 2009. Conditions and timing of pumpellyite-actinolite facies metamorphism in the Early Mesozoic frontal accretionary prism of the Madre de Dios Archipelago (50°20′S; S-Chile). Journal of Petrology 50, 2127–55.CrossRefGoogle Scholar
Willner, A. P., Thomson, S. N., Kröner, A., Wartho, J. A., Wijbrans, J & Hervé, F. 2005. Time markers for the evolution and exhumation history of a late Palaeozoic paired metamorphic belt in central Chile (34°-35°30′S). Journal of Petrology 46, 1835–58.CrossRefGoogle Scholar
Supplementary material: File

Willner Supplementary Material

Willner Supplementary Material

Download Willner Supplementary Material(File)
File 4.7 MB