Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-23T16:27:38.242Z Has data issue: false hasContentIssue false

Provenance signatures for the Miocene volcaniclastic succession of the Tufiti di Tusa Formation, southern Apennines, Italy

Published online by Cambridge University Press:  27 October 2011

FRANCESCO PERRI*
Affiliation:
Dipartimento di Scienze della Terra, Università della Calabria, Arcavacata di Rende, 87036 Rende (CS), Italy
SALVATORE CRITELLI
Affiliation:
Dipartimento di Scienze della Terra, Università della Calabria, Arcavacata di Rende, 87036 Rende (CS), Italy
FRANCESCO CAVALCANTE
Affiliation:
CNR – Istituto di Metodologie per l'Analisi Ambientale, 85050 Tito Scalo (PZ), Italy
GIOVANNI MONGELLI
Affiliation:
Dipartimento di Chimica, Università della Basilicata, Campus di Macchia Romana, 85100 Potenza (PZ), Italy
ROCCO DOMINICI
Affiliation:
Dipartimento di Scienze della Terra, Università della Calabria, Arcavacata di Rende, 87036 Rende (CS), Italy
MAURIZIO SONNINO
Affiliation:
Dipartimento di Scienze della Terra, Università della Calabria, Arcavacata di Rende, 87036 Rende (CS), Italy
ROSANNA DE ROSA
Affiliation:
Dipartimento di Scienze della Terra, Università della Calabria, Arcavacata di Rende, 87036 Rende (CS), Italy
*
Author for correspondence: [email protected]

Abstract

The Tufiti di Tusa Formation, a siliciclastic turbidite system of lower Miocene age in southern Italy, is mainly composed of volcaniclastic and quartzolithic sandstones interbedded with mudrocks. Sandstones are subdivided into four distinctive petrofacies, evolving from quartzolithic to volcaniclastic lithofeldspathic and feldspatholithic, reflecting detrital evolution from growing orogen (quartzolithic petrofacies) to active volcanism (volcaniclastic petrofacies). The mineralogical composition of the associated mudrocks is predominantly characterized by phyllosilicates, mainly illite/smectite mixed layers (I/S R1 associated with minor amounts of I/S R0 in the lower part of the succession, and I/S R3 in its upper part), together with illite, detrital micas and chlorite, and minor amounts of chlorite/smectite mixed layers and kaolinite, in addition to quartz, calcite and feldspars. The most abundant phyllosilicates are I/S mixed layers, 10-Å minerals (illite and micas) and chlorite, while kaolinite and chlorite–smectite mixed layers are present as a few per cent or in trace amounts. X-ray diffraction patterns show the occurrence of the ordered I/S R1 mixed layers in most samples but, at the top of the succession, some samples are characterized by I/S R3 mixed layers, whilst in the lower part of the succession I/S R1 is associated with a lower amount of I/S R0. These features suggest that the Tufiti di Tusa Formation experienced a medium diagenetic grade, and the occurrence of I/S R3 could be explained by K-availability in samples in the upper part of the succession. The lithic fragments in sandstones are metasedimentary rocks of Palaeozoic age, and andesite to dacite volcanic rocks of early Miocene age. The associated mudrocks also contain trace element ratios (Cr/V, Y/Ni, La/Sc, Th/Sc, Th/Co, Th/Cr, Cr/Th and Eu/Eu*) consistent with a provenance containing intermediate to silicic sources with scarce or absent basic rocks. The chemical index of alteration (63.2 to 71.6) suggests a moderate degree of weathering in the source. Furthermore, the K/Cs ratios of sediments confirm likely moderate rather than intense weathering. The index of compositional variability (ICV) values (from 1.2 to 2.5) are high enough to suggest the mudrocks are first-cycle sediments with little recycling. The Al–Ti–Zr diagram and the Th/Sc v. Zr/Sc plot indicate poor sorting and rapid deposition of the sediments. Detrital and sedimentary evolution of the Tufiti di Tusa Formation provides constraints, in terms of relations between a growing orogenic system and active volcanism in the Central Mediterranean, to contribute to geodynamic and palaeogeographic reconstructions of the earliest collision in the southern Apennines region.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andreozzi, M., Dinelli, E. & Tateo, F. 1997. Geochemical and mineralogical criteria for the identification of ash layers in the stratigraphic framework of a foredeep; the Early Miocene Mt. Cervarola Sandstones, Northern Italy. Chemical Geology 137, 2339.CrossRefGoogle Scholar
Assorgia, A., Barca, S., Onnis, G., Secchi, F. A. G. & Spano, C. 1986. Episodi sedimentari e vulcanici nel settore occidentale dell'Arcuentu e loro contesto geodinamico (Sardegna SW). Memorie della Società Geologica Italiana 35, 229–40.Google Scholar
Bertolino, S. R. L., Zimmermann, U. & Sattler, F. 2007. Mineralogy and geochemistry of bottom sediments from water reservoirs in the vicinity of Córdoba, Argentina: environmental and health constraints. Applied Clay Science 36, 206–20.CrossRefGoogle Scholar
Bhatia, M. R. & Crook, K. A. W. 1986. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology 92, 181–93.CrossRefGoogle Scholar
Bonardi, G., Cavazza, W., Perrone, V. & Rossi, S. 2001. Calabria-Peloritani Terrane and Northern Ionian Sea. In Anatomy of an Orogen: The Apennines and Adjacent Mediterranean Basins (eds Vai, G. B. & Martini, I. P.), pp. 287306. Dordrecht: Kluwer Academic Publishers.Google Scholar
Boni, M., Del Vecchio, L. & Lirer, L. 1990. Considerazioni sul vulcanismo esplosivo miocenico della Sardegna S-W. Memorie della Società Geologica Italiana 45, 9891000.Google Scholar
Caracciolo, L., Le Pera, E., Muto, F. & Perri, F. 2009. Sandstone petrology and muddstone geochemistry of the Peruc-Korycany Formation (Bohemian Cretaceous Basin, Czech Republic). International Geology Review 53, 1003–31. First published online: 29 December 2009.CrossRefGoogle Scholar
Cavalcante, F., Fiore, S., Lettino, A., Piccarreta, G. & Tateo, F. 2007. Illite-Smectite mixed layer in Sicilide shales and piggy-back deposits of the Gorgoglione Formation (Southern Apennines): geological inferences. Bollettino della Società Geologica Italiana 103, 241–54.Google Scholar
Cavalcante, F., Fiore, S., Piccarreta, G. & Tateo, F. 2003. Geochemical and mineralogical approaches to assessing provenance and deposition of shales: a case study. Clay Minerals 38, 383–97.CrossRefGoogle Scholar
Condie, K. C. & Wronkiewicz, D. J. 1990. The Cr/Th ratio in Precambrian pelites from the Kaapvaal craton as an index of craton evolution. Earth and Planetary Science Letters 90, 256–67.CrossRefGoogle Scholar
Cox, R. & Lowe, D. R. 1995. A conceptual review of regional-scale controls on the composition of clastic sediment and the co-evolution of continental blocks and their sediment cover. Journal of Sedimentary Research 1, 112.Google Scholar
Critelli, S. 1999. The interplay of lithospheric flexure and thrust accomodation in forming stratigraphic sequences in the Southern Apennines foreland basin system, Italy. Rendiconti di Scienze Fisiche e Naturali dell'Accademia Nazionale dei Lincei 10, 257326.CrossRefGoogle Scholar
Critelli, S., De Rosa, R., Sonnino, M. & Zuffa, G. G. 1990. Significato dei depositi vulcanoclastici della formazione delle Tufiti di Tusa (Miocene inferiore, Lucania meridionale). Bollettino della Società Geologica Italiana 109, 743–62.Google Scholar
Critelli, S. & Le Pera, E. 1998. Post-Oligocene sediment-dispersal systems and unroofing history of the Calabrian microplate, Italy. International Geology Review 40, 609–37.CrossRefGoogle Scholar
Critelli, S., Mongelli, G., Perri, F., Martín-Algarra, A., Martín-Martín, M., Perrone, V., Dominici, R., Sonnino, M. & Zaghloul, M. N. 2008. Compositional and geochemical signatures for the sedimentary evolution of the Middle Triassic–Lower Jurassic continental redbeds from Western–Central Mediterranean Alpine chains. Journal of Geology 116, 375–86.Google Scholar
Cullers, R. L. 2000. The geochemistry of shales, siltstones and sandstones of Pennsylvanian-Permian age, Colorado, USA: implications for provenance and metamorphic studies. Lithos 51, 181203.CrossRefGoogle Scholar
Dickinson, W. R. 1970. Interpreting detrital modes of greywacke and arkose. Journal of Sedimentary Petrology 40, 695707.Google Scholar
Dickinson, W. R. 1985. Interpreting provenance relations from detrital modes of sandstones. In Provenance of Arenites (ed. Zuffa, G. G.), pp. 333–61. Dordrecht: Reidel.CrossRefGoogle Scholar
Doglioni, C., Harabaglia, P., Martinelli, G., Mongelli, F. & Zito, G. 1996. A geodynamic model of the Southern Apennines accretionary prism. Terra Nova 8, 540–7.CrossRefGoogle Scholar
Fedo, C. M., Nesbitt, H. W. & Young, G. M. 1995. Unraveling the effect of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology 23, 921–4.2.3.CO;2>CrossRefGoogle Scholar
Feng, R. & Kerrich, R. 1990. Geochemistry of finegrained clastic sediments in the Archean Abitibi greenstones belt, Canada: implications for provenance and tectonic setting. Geochimica et Cosmochima Acta 54, 1061–81.CrossRefGoogle Scholar
Fesneau, C., Deconinck, J. F., Pellenard, P. & Reboulet, S. 2009. Evidence of aerial volcanic activity during the Valanginian along the Northern Tethys margin. Cretaceous Research 30, 533–9.CrossRefGoogle Scholar
Floyd, P. A. & Leveridge, B. E. 1987. Tectonic environment of the Devonian Gramscatho basin, south Cornwall: framework mode and geochemical evidence from turbidite sandstones. Journal of the Geological Society 144, 531–42.Google Scholar
Floyd, P. A., Winchester, J. A. & Park, R. G. 1989. Geochemistry and tectonic setting of Lewisian clastic metasediments from the Early Proterozoic Loch Marse Group of Gairloch, N.W. Scotland. Precambrian Research 45, 203–14CrossRefGoogle Scholar
Fralick, P. 2003. Geochemistry of clastic sedimentary rocks: ratio techniques. In Geochemistry of Sediments and Sedimentary Rocks: Evolutionary Considerations to Mineral-Deposit-Forming Environments (ed. Lentz, D. R.), pp. 85104. Geological Association of Canada, GEOText, vol. 4.Google Scholar
Franzini, M., Leoni, L. & Saitta, M. 1975. Revisione di una metodologia analitica per fluorescenza X basata sulla correzione degli effetti di matrice. Rendiconti Società Italiana di Mineralogia e Petrologia 31, 365–78.Google Scholar
Garcia, D., Fonteilles, M. & Moutte, J. 1994. Sedimentary fractionations between Al, Ti, and Zr and the genesis of strongly peraluminous granites. Journal of Geology 102, 411–22.Google Scholar
Guerrera, F., Martín-Algarra, A. & Perrone, V. 1993. Late Oligocene-Miocene syn-, late-orogenic successions in Western and Central Mediterranean Chains from the Betic Cordillera to the Southern Apennines. Terra Nova 5, 525–44.Google Scholar
Guerrera, F. & Veneri, F. 1989. Evidenze di attività vulcanica nei sedimenti neogenici e pleistocenici dell'Appennino: stato delle conoscenze. Bollettino della Società Geologica Italiana 108, 121–60.Google Scholar
Ingersoll, R. V., Bullard, T. F., Ford, R. L., Grimm, J. P., Pickle, J. D. & Sares, S. W. 1984. The effect of grain size on detrital modes: a test of the Gazzi-Dickinson point-counting method. Journal of Sedimentary Petrology 54, 103–16.Google Scholar
Johnsson, M. J. 2000. Tectonic assembly of east-central Alaska: evidence from Cretaceous–Tertiary sandstones of the Kandik River terrane. Geological Society of American Bulletin 112, 1023–42.Google Scholar
Krumm, S. 1996. WINFIT 1.2: version of November 1996 (The Erlangen geological and mineralogical software collection) of “WINFIT 1.0: a public domain program for interact ive profile-analysis under WINDOWS”. XIII Conference on Clay Mineralogy and Petrology, Praha, 1994. Acta Univers itatis Carolinae Geologica 38, 253–61.Google Scholar
LaMaskin, T. A., Dorsey, R. J. & Vervoort, J. D. 2008. Tectonic controls on mudrock geochemistry, Mesozoic rocks of eastern Oregon and western Idaho, U.S.A.: implications for cordilleran tectonics. Journal of Sedimentary Research 78, 765–83.Google Scholar
Laviano, R. 1987. Analisi mineralogica quantitativa di argille mediante diffrattometria di raggi X. In Procedure di analisi di materiali argillosi. 1–2/06/1987, pp. 215–34. Roma: ENEA S. Teresa, Lerici (Sp); Ed.ENEA.Google Scholar
Lentini, F., Carbone, S., Di Stefano, A. & Guarnieri, P. 2002. Stratigraphical and structural constraints in the Lucanian Apennines (Southern Italy): tools for reconstructing the geological evolution. Journal of Geodynamics 34, 141–58.CrossRefGoogle Scholar
Leoni, L. & Saitta, M. 1976. X-ray fluorescence analysis of 29 trace elements in rock and mineral standards. Rendiconti Società Italiana di Mineralogia e Petrologia 32, 497510.Google Scholar
McLennan, S. M., Hemming, D. K. & Hanson, G. N. 1993. Geochemical approaches to sedimentation, provenance and tectonics. Geological Society of America Special Paper 284, 2140.Google Scholar
McLennan, S. M., Taylor, S. R. & Hemming, S. R. 2006. Composition, differentiation, and evolution of continental crust: constraints from sedimentary rocks and heat flow. In Evolution and Differentiation of the Continental Crust (eds Brown, M. & Rushmer, T.), pp. 92134. Cambridge: Cambridge University Press.Google Scholar
Merriman, R. J. & Peacor, D. R. 1999. Very low–grade metapelites: mineralogy, microfabrics and measuring reaction progress. In Low-Grade Metamorphism (eds Frey, M. & Robinson, D.), pp. 1060. Oxford: Blackwell Sciences Ltd.Google Scholar
Mitchell, R. L. & Sheldon, N. D. 2009. Weathering and paleosol formation in the 1.1 Ga Keweenawan Rift. Precambrian Research 168, 271–83.Google Scholar
Mongelli, G., Critelli, S., Perri, F., Sonnino, M. & Perrone, V. 2006. Sedimentary recycling, provenance and paleoweathering from chemistry and mineralogy of Mesozoic continental redbed mudrocks, Peloritani Mountains, Southern Italy. Geochemical Journal 40, 197209.CrossRefGoogle Scholar
Moore, D. M. & Reynolds, R. C. 1997. X-Ray Diffraction and the Identification and Analysis of Clay Minerals, 2nd ed. New York: Oxford University Press, 378 pp.Google Scholar
Nesbitt, H. W. & Young, G. M. 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299, 715–17.CrossRefGoogle Scholar
Ogniben, L. 1969. Schema introduttivo alla geologia del confine calabro-lucano. Memorie della Società Geologica Italiana 8, 435763.Google Scholar
Patacca, E. & Scandone, P. 2007. Geology of the Southern Apennines. In Results of the CROP Project, Sub-project CROP-04 Southern Apennines (Italy) (eds Mazzotti, A., Patacca, E. & Scandone, P.), pp. 75–119. Bollettino della Società Geologica Italiana (Italian Journal of Geosciences) Special Issue no. 7.Google Scholar
Perri, F. 2008. Clay mineral assemblage of the Middle Triassic-Lower Jurassic mudrocks from Western-Central Mediterranean Alpine Chains. Periodico di Mineralogia 77, 2340.Google Scholar
Perri, F., Cirrincione, R., Critelli, S., Mazzoleni, P. & Pappalardo, A. 2008. Clay mineral assemblages and sandstone compositions of the Mesozoic Longobucco Group (north-eastern Calabria): implications for burial history and diagenetic evolution. International Geology Review 50, 1116–31.CrossRefGoogle Scholar
Perri, F., Critelli, S., Mongelli, G. & Cullers, R. L. 2010. Sedimentary evolution of the Mesozoic continental redbeds using geochemical and mineralogical tools: the case of Upper Triassic to Lowermost Jurassic Monte di Gioiosa mudstones (Sicily, southern Italy). International Journal of Earth Sciences, doi:10.1007/s00531-010-0602-6.CrossRefGoogle Scholar
Perri, F., Mongelli, G., Sonnino, M., Critelli, S. & Perrone, V. 2005. Chemistry and mineralogy of mesozoic continental redbed mudrocks from the Calabrian Arc, Southern Italy: implication for provenance, paleoweathering and burial history. Atti Ticinensi di Scienze della Terra 10, 103–6.Google Scholar
Perrone, V., Martìn-Algarra, A., Critelli, S., Decandia, F. A., D'Errico, M., Estèvez, A., Iannace, A., Lazzarotto, A., Martìn-Martìn, M., Martìn-Rojas, I., Mazzoli, S., Messina, A., Mongelli, G., Vitale, S. & Zaghloul, M. N. 2006. “Verrucano” and “Pseudoverrucano” in the central-western Mediterranean Alpine chains: palaeogeographic evolution and geodynamic significance. In Geology and Active Tectonics of the Western Mediterranean Region and North Africa (eds Chalouan, A. & Moratti, G.), pp. 143. Geological Society of London, Special Publication no. 262.Google Scholar
Pescatore, T., Renda, P., Schiattarella, M. & Tramutoli, M. 1999. Stratigraphic and structural relationships between Meso-Cenozoic Lagonegro basin and coeval carbonate platform in Southern Apennines, Italy. Tectonophysics 315, 269–86.CrossRefGoogle Scholar
Reynolds, R. C. Jr. 1985. NEWMOD: a computer program for the calculation of the basal diffraction intensities of mixed-layered clay minerals. Hanover, New Hampshire: R. C. Reynolds.Google Scholar
Roser, B. P., Coombs, D. S., Korsch, R. J. & Campbell, J. D. 2002. Whole-rock geochemical variations and evolution of the arc-derived Murihiku Terrane, New Zealand. Geological Magazine 139, 665–85.CrossRefGoogle Scholar
Sgrosso, I. 1994. Sulla posizione del bacino di Lagonegro (Appennino centro-meridionale). Bollettino della Società Geologica Italiana 113, 179–94.Google Scholar
Slack, J. F. & Stevens, B. P. J. 1994. Clastic metasediments of the Early Proterozoic Broken Hill Group, New South Wales, Australia: geochemistry, provenance, and metallogenic significance. Geochimica et Cosmochimica Acta 58, 257–73.CrossRefGoogle Scholar
Stevenson, R. K., Whittaker, S. & Mountjoy, E. W. 2000. Geochemical and Nd isotopic evidence for sedimentary-source changes in the Devonian miogeocline of the southern Canadian Cordillera. Geological Society of American Bulletin 112, 531–9.2.0.CO;2>CrossRefGoogle Scholar
Taylor, S. R. & McLennan, S. M. 1985. The Continental Crust: Its Composition and Evolution. Oxford: Blackwell.Google Scholar
Winchester, J. A. & Floyd, P. A. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology 20, 325–43.CrossRefGoogle Scholar
Zaghloul, M. N., Critelli, S., Perri, F., Mongelli, G., Perrone, V., Sonnino, M., Tucker, M., Aiello, M. & Ventimiglia, C. 2010. Depositional systems, composition and geochemistry of Triassic rifted-continental margin redbeds of Internal Rif Chain, Morocco. Sedimentology 57, 312–50.CrossRefGoogle Scholar
Zimmermann, U. & Spalletti, L. A. 2009. Provenance of the Lower Paleozoic Balcarce Formation (Tandilia System, Buenos Aires Province, Argentina): implications for paleogeographic reconstructions of SW Gondwana. Sedimentary Geology 219, 723.CrossRefGoogle Scholar
Zuffa, G. G. 1980. Hybrid arenites: their composition and classification. Journal of Sedimentary Petrology 50, 21–9.Google Scholar