Published online by Cambridge University Press: 31 March 2009
Oblique and normal fault systems exposed in the Büyük Menderes Graben (BMG) region record two successive and independent complex tectonic events. The first group tectonic event is defined by an E–W extension related to N–S contraction and transpression. This group is responsible for the development of NW- and NE-trending conjugate pairs of oblique faults which controlled Early–Middle Miocene basin formation. Between the Early–Middle Miocene and Plio-Quaternary strata exists an unconformity, indicating a period of folding, uplift and severe erosion associated with N–S shortening. The second group of events was the change in tectonic regime from E–W extension to N–S extension which controlled the formation of the Büyük Menderes Graben by three progressive pulses of deformation. The first pulse of extensional deformation was initially recorded in the region by the exhumation of the deep part of the Menderes Massif (MM) with the development of the E-trending Büyük Menderes Detachment Fault (BMDF). The minimum age of this pulse is constrained by the older Plio-Quaternary fluviatile deposits of the Büyük Menderes Graben that range in age from the Plio-Pleistocene boundary interval to Late Pleistocene. The second pulse, which is marked by the rapid deposition of alluvial deposits, initiated the formation of approximately E–W-trending high-angle normal faults synthetic and antithetic to the Büyük Menderes Detachment Fault, on the northern margin during Holocene times. These faults are interpreted as secondary steeper listric faults that merge with the main Büyük Menderes Detachment Fault at depth. The third pulse was the migration of the Büyük Menderes Graben depocentre to the present day position by diachronous activity of secondary steeper listric faults. These steeper faults are the most seismically active tectonic elements in western Turkey. According to the stratigraphic and structural data, the N–S extension in the Büyük Menderes Graben region produced a progressive deformation phase with different pulses during its Plio-Quaternary evolution, with migration of deformation from the master fault to the hangingwall. The formation of diachronous secondary synthetic and antithetic steeper faults on the upper plate of the Büyük Menderes Detachment Fault, hence the southward migration of the deformation and of the Büyük Menderes Graben depocentre, should be related to the evolution of detachment in the region. The presence of the seismically active splays of secondary faults implies an active detachment system in the region. This young Plio-Quaternary N–S extension in the Büyük Menderes Graben may be attributed to the combined effects of the two continuing processes in Aegean region. The first process is back-arc spreading or probably the roll-back of African slab below the south Aegean Arc, which seems to be responsible for the change in the stress tensor from E–W extension to N–S extension. The second and later event is the southwestward escape of the Anatolian block along its boundary fault, that is, the North Anatolian fault (NAF).