Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T16:27:06.506Z Has data issue: false hasContentIssue false

Primary bone and dinosaurian physiology

Published online by Cambridge University Press:  01 May 2009

R. E. H. Reid
Affiliation:
Department of Geology, The Queen's University of Belfast, Belfast BT7 1NN, Northern Ireland

Abstract

Primary compact bone is ignored in some recent discussions of claims that dinosaurs were endotherms, but forms the basis of one of the arguments from bone, and part of the basis of another. This paper explains its histology and discusses its possible significance. In dinosaurs the primary compact bone was commonly fibre-lamellar bone, resembling bone seen in many large mammals, and implying a capacity to sustain rapid growth to large sizes. This probably indicates some physiological difference between dinosaurs and modern types of reptiles; but similar bone is present in early therapsids, which were probably not endotherms, and bone with typical reptilian ‘growth rings’ was sometimes formed. Endothermy is also unlikely in most kinds of dinosaurs, if its evolution requires a trend to small sizes; but perhaps they were ‘failed endotherms’.

Type
Articles
Copyright
Copyright © Cambridge University Press 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barker, R. T. 1971. Dinosaur physiology and the origin of mammals. Evolution 25, 636–58.Google Scholar
Bakker, R. T. 1972. Anatomical and ecological evidence of endothermy in dinosaurs. Nature, London 238, 81–5.CrossRefGoogle Scholar
Baur, M. E. & Friedl, R. R. 1980. Application of size-metabolism allometry to therapsids and dinosaurs. In A Cold Look at the Warm-blooded Dinosaurs (ed. Thomas, R. D. K. and Olson, E. C), pp. 253–86. American Association for the Advancement of Science Selected Symosium no. 28, Boulder, Colorado: Westview Press.Google Scholar
Buffrenil, V. de & Buffetaut, E. 1981. Skeletal growth lines in an Eocene crocodilian skull from Wyoming as an indicator of ontogenetic age and palaeoclimatic conditions. Journal of Vertebrate Paleontology 1, 5765.CrossRefGoogle Scholar
Colbert, E. H., Cowles, R. B. & Bogert, C. M. 1946, Temperature tolerances in the American alligator and their bearing on the habits, evolution and extinction of the dinosaurs. Bulletin of the American Museum of Natural History 86, 331–73.Google Scholar
Currey, J. D. 1960. Differences in the blood supply of bone of different histological types. Quarterly Journal of Microscopical Science 101, 351–70.Google Scholar
Currey, J. D. 1962. The histology of the bone of a prosauropod dinosaur. Palaeontology 5, 238–46.Google Scholar
Enlow, D. H. 1969. The bone of reptiles. In Biology of the Reptilia, vol. 1 (ed. Gans, C. and Bellairs, A. d'A.), pp. 4580. London, New York: AcademicPress.Google Scholar
Enlow, D. H. & Brown, S. O. 1956. A comparative histological study of fossil and Recent bone tissues. Part I. Texas Journal of Science 8, 405–43.Google Scholar
Enlow, D. H. & Brown, S. O. 1957. A comparative histological study of fossil and Recent bone tissues. Part II. Texas Journal of Science 9, 186214.Google Scholar
Feduccia, A. 1973. Dinosaurs as reptiles. Evolution 27, 166–9.Google Scholar
Ferguson, M. W. J., Honig, L. S., Bringas, P. & Slavkin, H. C. 1982. In vivo and in vitro development of first branchial arch derivatives in Alligator mississippiensis. In Factors and Mechanisms Influencing Bone Growth (ed. Dixon, A. D and Sarnat, B.), pp. 275–86. New York: Alan R. Liss Inc.Google Scholar
Foote, J. S. 1916. A contribution to the comparative histology of the femur. Smithsonian Contributions to Knowledge 35, 1242.Google Scholar
Gross, W. 1934. Die Typen der mikroskopischen Knochenbaues bei fossilen Stegocephalen und Reptilien. Zeitschrift für Anatomie 103, 731–64.Google Scholar
Halstead, L. B. 1974. Vertebrate Hard Tissues. London, Winchester; Wykeham Science Series. 179 pp.Google Scholar
Halstead, L. B. 1975. The Evolution and Ecology of the Dinosaurs. London: Peter Lowe. 116 pp.Google Scholar
Halstead, L. B. & Mercer, J. R. 1968. Histology of dinosaur bone. In 16th Symposium on Vertebrate Palaeontology and Comparative Anatomy. Reading.Google Scholar
Hopson, J. A. 1976. Hot-, cold-, or lukewarm-blooded dinosaurs? Palaeobiology 2, 271–5.Google Scholar
Hotton, N. 1980. An alternative to dinosaur endothermy. In A Cold Look at the Warm-blooded Dinosaurs (ed. Thomas, R. D. K. and Olson, E. C.), pp. 311–50. American Association for the Advancement of Science Selected Symposium no. 28, Boulder, Colorado: Westview Priess.Google Scholar
Kemp, T. S. 1982. Mammal-like Reptiles and the Origin of Mammals. London, New York: Academic Press.Google Scholar
McNab, B. K. 1978. The evolution of endothermy in the phylogeny of mammals. American Naturalist 112, 121.CrossRefGoogle Scholar
McNab, B. K. & Auffenberg, W. 1976. The effect of large body size on the temperature regulation of the Komodo monitor, Varanus komodoensis. Comparative Biochemistry and Physiology 55A, 345–50.Google Scholar
McFarland, W. N. & Heiser, J. B. 1979. Life in water: its influence on basic vertebrate functions. In Vertebrate Life (McFarland, W. N., Pough, F. H., Cade, T. J. & Heiser, J. B.), pp. 221–83. New York: Macmillan. 875 pp.Google Scholar
Nopcsa, F. von. 1925. Dinosaurierreste aus Siebenbürgen. IV. Die Wirbelsäule von Rhabdodon und Orthomerus. Palaeontographica Hungarica 1, 272–88.Google Scholar
Nopcsa, F. von. 1933. On the histology of the ribs of immature and half-grown trachodont dinosaurs. Proceedings of the Zoological Society of London 1, 221–3.Google Scholar
Ostrom, J. H. 1973. The ancestry of birds. Nature, London 242, 136.CrossRefGoogle Scholar
Ostrom, J. H. 1976. Archaeopteryx and the origin of birds. Biological Journal of the Linnaean Society, London 8, 91182.CrossRefGoogle Scholar
Ostrom, J. H. 1980. The evidence for endothermy in dinosaurs. In A Cold Look at the Warm-blooded Dinosaurs (ed. Thomas, R. D. K. and Olson, E. C), pp. 1554. American Association for the Advancement of Science Selected Symposium no. 28. Boulder, Colorado: Westview Press.Google Scholar
Ostrom, J. H. 1981. Dinosaurs. Carolina Science Readers 98. Burlington, N. Carolina. 32 pp.Google Scholar
Pough, F. H. 1979. Mesozoic reptiles. In Vertebrate Life (McFarland, W. N., Pough, F. H., Cade, T. J. & Heiser, J. B.), pp. 455513. New York: Macmillan. 875 pp.Google Scholar
Reid, R. E. H. 1981. Lamellar-zonal bone with zones and annuli in the pelvis of a sauropod dinosaur. Nature, London 292, 4951.CrossRefGoogle Scholar
Reid, R. E. H. 1983. High vascularity in bones of dinosaurs, mammals and birds. Geological Magazine 120, 191–4.CrossRefGoogle Scholar
Ricqlès, A. J. de. 1968. Recherches paléohistologiques sur les os longs des tétrapodes. I. Origine du tissue osseux plexiforme des dinosauriens sauropodes. Annales de Paléontologie (Vertébrés) 54 (2), 133–45.Google Scholar
Ricqlès, A. J. de. 1974. Evolution of endothermy: histological evidence. Evolutionary Theory 1, 5180.Google Scholar
Ricqlès, A. J. de. 1975. Recherches paléohistologiques sur les os longs des tétrapodes. VII. Sur la classification, la signification fonctionelle et l'histoire des tissues osseux des tetrapodes. Première partie: structures. Annales de Paléontologie (Vertébrés) 61 (1), 49129.Google Scholar
Ricqlès, A. J. de. 1976. On bone histology of fossil and living reptiles, with comments on its functional and evolutionary significance. In Morphology and Biology of Reptiles (ed. d'A. Bellairs, A. and Cox, C. B), pp. 123–50. Linnean Society Symposium Series no. 3, London: Academic Press.Google Scholar
Ricqlès, A. J. de. 1980. Tissue structure of dinosaur bone. In A Cold Look at the Warm-blooded Dinosaurs (ed. Thomas, R. D. K. and Olson, E. C), pp. 103–39. American Association for the Advancement of Science Selected Symposium 28, Boulder, Colorado: Westview Press.Google Scholar
Russell, L. S. 1965. Body temperature of dinosaurs and its relationship to their extinction. Journal of Paleontology 39, 497501.Google Scholar
Seitz, A. L. L. 1907. Vergleichende Studien über den mikroskopischen Knochenbau fossiler und rezenter Reptilien und dessen Bedeutung für das Wachstum und Umbildung des Knochengewebes in allgemeinen. Nova Acta Abhandlungen der kaiserlichen Leopold–Carolignischen deutschen Akademie der Naturforscher 87, 230370.Google Scholar
Smith, J. W. 1960. Collagen fibre patterns in mammalian bone. Journal of Anatomy, London 94, 329–44.Google ScholarPubMed
Spotila, J. R., Lommen, P. W., Bakken, P. S. and Gates, D. M. 1973. A mathematical model for body temperatures of large reptiles; implications for dinosaur ecology. American Naturalist 107, 391404.CrossRefGoogle Scholar
Thulborn, R. A. 1975. Dinosaur polyphyly and the classification of archosaurs and birds. Australian Journal of Zoology 23 (2), 249–70.CrossRefGoogle Scholar
Valen, L. van. 1960. Therapsids as mammals. Evolution 14, 304–13.Google Scholar
Weidenreich, F. 1930. Das Knochengewebe. In Handbuch der mikroskopischen Anatomie des Menschen, vol. II (2) (ed. von Mollendorf, W. H. W.), pp. 391520. Berlin: Springer-Verlag.Google Scholar