Hostname: page-component-599cfd5f84-wh4qq Total loading time: 0 Render date: 2025-01-07T06:51:00.013Z Has data issue: false hasContentIssue false

Possible juvenile Palaeoarchaean TTG magmatism in eastern India and its constraints for the evolution of the Singhbhum craton

Published online by Cambridge University Press:  26 November 2010

JENNIFER TAIT*
Affiliation:
School of GeoSciences, University of Edinburgh, Grant Institute, The King's Buildings, Edinburgh EH9 3JW, United Kingdom
UDO ZIMMERMANN
Affiliation:
University of Stavanger, Faculty of Science and Technology, Department of Petroleum Engineering, 4036 Stavanger, Norway
TAKASHI MIYAZAKI
Affiliation:
Institute for Research on Earth Evolution, JAMSTEC, 2–15 Natsushima-cho, Yokosuka 237-0061, Japan
SERGEY PRESNYAKOV
Affiliation:
Centre of Isotopic Research, All-Russian Geological Research Institute (VSEGEI), 74 Sredny Prospect, 199106 St Petersburg, Russia
QING CHANG
Affiliation:
Institute for Research on Earth Evolution, JAMSTEC, 2–15 Natsushima-cho, Yokosuka 237-0061, Japan
JOYDIP MUKHOPADHYAY
Affiliation:
Department of Geology, Presidency College, Kolkata, India
SERGEY SERGEEV
Affiliation:
Centre of Isotopic Research, All-Russian Geological Research Institute (VSEGEI), 74 Sredny Prospect, 199106 St Petersburg, Russia
*
Author for correspondence: [email protected]

Abstract

High-precision SHRIMP U–Pb zircon dating yields a late Palaeoarchaean age (3290 ± 8.6 Ma) for a large, unmetamorphosed, weakly peraluminous TTG body (the Keonjhargarh–Bhaunra pluton) in the Singhbhum craton of eastern India. One inherited subhedral zircon grain gave a concordant age of 3495.9 ± 5.3 Ma and Nd isotope characteristics show a juvenile trend with εNdt ~ 0 and TDM 3395–3453 Ma. The data support a model of typical Archaean crustal evolution until late Palaeoarchaean times for the Singhbhum craton, which is in contrast to the more southerly Bastar craton where Palaeoarchaean non-TTG granites have been identified. These data demonstrate the diachronous development of continental crustal blocks now forming the basement of the eastern and central peninsular of India.

Type
Rapid Communication
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armstrong, R. A., Compston, W., DeWit, M. J. & Williams, I. S. 1990. The stratigraphy of the 3.5–3.2-Ga Barberton greenstone-belt revisited – a single zircon ion microprobe study. Earth and Planetary Science Letters 101, 90106.CrossRefGoogle Scholar
Compston, W., Kinny, P. D., Williams, I. S. & Foster, J. J. 1986. The age and Pb loss behavior of zircons from the Isua supracrustal belt as determined by ion microprobe. Earth and Planetary Science Letters 80, 7181.CrossRefGoogle Scholar
Dauphas, N., Cates, N. L., Mojzsis, S. J. & Busigny, V. 2007. Identification of chemical sedimentary protoliths using iron isotopes in the >3750 Ma Nuvvuagittuq supracrustal belt, Canada. Earth and Planetary Science Letters 254, 358–76.CrossRefGoogle Scholar
DePaolo, D. J. 1981. Neodymium isotopes in the Colorado Front Range and crust-mantle evolution in the Proterozoic. Nature 291, 193–6.CrossRefGoogle Scholar
De Wit, M. J., Roering, C., Hart, R. J., Armstrong, R. A., Deronde, C. E. J., Green, R. W. E., Tredoux, M., Peberdy, E. & Hart, R. A. 1992. Formation of an Archean continent. Nature 357, 553–62.CrossRefGoogle Scholar
Drummond, M. S. & Defant, M. J. 1990. A model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting – Archean to modern comparisons. Journal of Geophysical Research-Solid Earth and Planets 95, 21503–21.CrossRefGoogle Scholar
Frost, B. R., Barnes, C. G., Collins, W. J., Arculus, R. J., Ellis, D. J. & Frost, C. D. 2001. A geochemical classification for granitic rocks. Journal of Petrology 42, 2033–48.CrossRefGoogle Scholar
Ghosh, J. G. 2004. 3.56 Ga tonalite in the central part of the Bastar craton, India: oldest Indian date. Journal of Asian Earth Sciences 23, 359–64.CrossRefGoogle Scholar
Ghosh, G. & Mukhopadhyay, J. 2007. Reappraisal of the structure of the Western Iron Ore Group, Singhbhum craton, eastern India: implications for the exploration of BIF-hosted iron ore deposits. Gondwana Research 12, 525–32.CrossRefGoogle Scholar
Goswami, J. N., Mishra, S., Wiedenbeck, M., Ray, S. L. & Saha, A. K. 1995. 3.55 Ga old zircon from Singhbhum-Orissa Iron Ore craton, eastern India. Current Science 69, 1008–12.Google Scholar
Harris, N. B. W. & Inger, S. 1992. Trace element modelling of pelite-derived granites. Contributions to Mineralogy and Petrology 110, 4656.CrossRefGoogle Scholar
Hawkesworth, C. J. & Kemp, A. I. S. 2006. Evolution of the continental crust. Nature 443, 811–17.CrossRefGoogle ScholarPubMed
Hofmann, A. W. 1988. Chemical differentiation of the Earth – the relationship between mantle, continental-crust, and oceanic-crust. Earth and Planetary Science Letters 90, 297314.CrossRefGoogle Scholar
Hofmann, A. W. 1997. Mantle geochemistry: the message from oceanic volcanism. Nature 385, 219–29.CrossRefGoogle Scholar
Kamber, B. S., Ewart, A., Collerson, K. D., Bruce, M. C. & Mcdonald, G. D. 2002. Fluid-mobile trace element constraints on the role of slab melting and implications for Archaean crustal growth models. Contributions to Mineralogy and Petrology 144, 3856.CrossRefGoogle Scholar
Kemp, A. I. S. & Hawkesworth, C. J. 2003. Granitic perspectives on the generation and secular evolution of the continental crust. In The Crust (ed. Rudnick, R. L.). pp. 349–410. Treatise in Geochemistry Volume III.CrossRefGoogle Scholar
Lowe, D. R. & Byerly, G. R. 1999. Stratigraphy of the west-central part of the Barberton greenstone belt, South Africa. In Geologic Evolution of the Barberton Greenstone Belt (eds Lowe, D. R. and Byerly, G. R.), pp 1–36. Geological Society of America Special Paper no. 329.Google Scholar
Martin, H. 1986. Effects of steeper Archaean geothermal gradient on geochemistry of subduction-zone magmas. Geology 14, 753756.2.0.CO;2>CrossRefGoogle Scholar
Mclennan, S. M., Taylor, S. R. & Hemming, S. R. 2006. Composition, differentiation, and evolution of continental crust: constraints from sedimentary rocks and heat flow. In Evolution and Differentiation of the Continental Crust (eds Brown, M. and Rushmer, T.), pp. 92134. New York, United States: Cambridge University Press.Google Scholar
Mishra, S., Deomurari, M. P., Wiedenbeck, M., Goswami, J. N., Ray, S. & Saha, A. K. 1999. 207Pb/206Pb zircon ages and the evolution of the Singhbhum Craton, eastern India: an ion microprobe study. Precambrian Research 93, 139–51.CrossRefGoogle Scholar
Moorbath, S., Taylor, P. N. & Jones, N. W. 1986. Dating the oldest terrestrial rocks – fact and fiction. Chemical Geology 57, 6386.CrossRefGoogle Scholar
Mukhopadhyay, D. 2001. The Archaean nucleus of Singhbhum: the present state of knowledge. Gondwana Research 4, 307–18.CrossRefGoogle Scholar
Mukhopadhyay, J., Beukes, N. J., Armstrong, R. A., Zimmermann, U., Ghosh, G. & Medda, R. A. 2008. Dating the oldest greenstone in India: a 3.51-Ga precise U-Pb SHRIMP zircon age for dacitic lava of the southern Iron Ore Group, Singhbhum craton. Journal of Geology 116, 449–61.CrossRefGoogle Scholar
Münker, C., Wörner, G., Yogodzinski, G. & Churikova, T. 2004. Behaviour of high field strength elements in subduction zones: constraints from Kamchatka-Aleutian arc lavas. Earth and Planetary Science Letters 224, 275–93.CrossRefGoogle Scholar
Naqvi, S. M. 2005. Geology and Evolution of the Indian Plate (from Hadean to Holocene- 4 Ga to 4 Ka). New Delhi: Capital Publishing Company, 398 pp.Google Scholar
Nesbitt, H. W. & Young, G. M. 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299, 715–17.CrossRefGoogle Scholar
Nutman, A. P., Bennett, V. C., Friend, C. R. L. & Rosing, M. T. 1997. Approximately 3710 and ≥3790 Ma volcanic sequences in the Isua (Greenland) supracrustal belt: structural and Nd isotope implications. Chemical Geology 141, 271–87.CrossRefGoogle Scholar
Nutman, A. P., Chadwick, B., Ramakrishnan, M. & Viswanatha, M. N. 1992. SHRIMP U-Pb ages of detrital zircon in Sargur Supracrustal rocks in Western Karnataka, Southern India. Journal of the Geological Society of India 39, 367–74.Google Scholar
Nutman, A. P., Friend, C. R. L., Barker, S. L. L. & Mcgregor, V. R. 2004. Inventory and assessment of Palaeoarchaean gneiss terrains and detrital zircons in southern West Greenland. Precambrian Research 135, 281314.CrossRefGoogle Scholar
Nutman, A. P., Fryer, B. J. & Bridgewater, D. 1989. The Early Archean Nulliak (supracrustal) assemblage, Northern Labrador. Canadian Journal of Earth Sciences 26, 2159–68.CrossRefGoogle Scholar
Pearce, J. A., Harris, N. B. W. & Tindle, A. G. 1984. Trace-element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology 25, 956–83.CrossRefGoogle Scholar
Peucat, J. J., Bouhallier, H., Fanning, C. M. & Jayananda, M. 1995. Age of the Holenarsipur greenstone belt, relationships with the surrounding gneisses (Karnataka, South-India). Journal of Geology 103, 701–10.CrossRefGoogle Scholar
Rajesh, H. M., Mukhopadhyay, J., Beukes, N. J., Gutzmer, J., Belyanin, G. A. & Armstrong, R. A. 2009. Evidence for an Early Archaean granite from Bastar craton, India. Journal of the Geological Society 166, 193–6.CrossRefGoogle Scholar
Rapp, R. P. & Watson, E. B. 1995. Dehydration melting of metabasalt at 8–32-Kbar – implications for continental growth and crust-mantle recycling. Journal of Petrology 36, 891931.CrossRefGoogle Scholar
Rollinson, H. 2006. Crustal generation in the Archean. In Evolution and Differentiation of the Continental Crust (eds Brown, M. and Rushmer, T.), pp. 173230. New York, United States: Cambridge University Press.Google Scholar
Saha, A. K. 1994. Crustal evolution of Singhbhum-North Orissa, eastern India. Bangalore: Geological Society of India, 328 pp.Google Scholar
Saha, A. K., Ray, S. L., Ghosh, S., Mukhopadhyay, K. & Dasgupta, D. 1984. Studies in crustal evolution of the Singhbhum Orissa Iron Ore Craton. In Monograph on Crustal Evolution of Parts of the Indian Shield (ed. Saha, A. K.), pp. 174, Indian Society of Earth Sciences Monograph Volume, Calcutta.Google Scholar
Saunders, A. D., Norry, M. J. & Tarney, J., 1988. Origin of MORB and chemically-depleted mantle reservoirs: trace element constraints. Journal of Petrology, Special Lithosphere Issue 1, 415–45.CrossRefGoogle Scholar
Sun, S. S. & Mcdonough, W. F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In Magmatism in Ocean Basins (eds Saunders, A. D. and Norry, M. J.), pp. 313–45. Geological Society of London, Special Publication no. 42.Google Scholar
Taylor, S. R. & McLennan, S. M. 1985. The Continental Crust: Its Composition and Evolution. London: Blackwell Scientific Publications, 312 pp.Google Scholar
Supplementary material: File

Tait supplementary material

Appendix.doc

Download Tait supplementary material(File)
File 37.9 KB