Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T06:46:21.687Z Has data issue: false hasContentIssue false

Pedogenic carbonates and flood sediment accretion rates: a quantitative model for alluvial arid-zone lithofacies

Published online by Cambridge University Press:  01 May 2009

M. R. Leeder
Affiliation:
Department of Earth Sciences, The University, Leeds, U. K.

Summary

A general model for pedogenic carbonate development in alluvial sediments is based upon of rates flood sediment accretion versus time taken for particular carbonate profiles to develop. Conclusions regarding rates of Holocene carbonate pedogenesis and the changing morphology and thicknesses of carbonate profiles with time are used to predict critical values of floodbasin accretion rates which would have enabled particular ancient profiles to develop. Local (intra-drainage basin) and regional profiles are separated and a number of models for calcrete genesis are outlined. The presence or absence of particular genetic stages of calcrete may be used as a rough guide to estimate ancient floodbasin accretion rates.

Type
Articles
Copyright
Copyright © Cambridge University Press 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, C. S. & Prior, J. C. 1971. Holocene sedimentation rates in overbank deposits in the Black Bottom of the lower Ohio River, Southern Illinios. Am. J. Sci. 270, 361–72.CrossRefGoogle Scholar
Allen, J. R. L. 1965(a). A review of the origin and characteristics of recent alluvial sediments. Sedimentology, 5, 89191.CrossRefGoogle Scholar
Allen, J. R. L. 1965(b). The sedimentation and paleogeography of the Old Red Sandstone of Anglesey, North Wales. Proc. Yorks. Geol. Soc. 35, 139185.CrossRefGoogle Scholar
Allen, J. R. L. 1970. Studies in fluviatile sedimentation: a comparison of fining-upwards cyclotherms, with special reference to coarse member composition and interpretation. J. sedim. Petrol. 40, 298323.Google Scholar
Allen, J. R. L. 1973. Compressional structures (patterned ground) in Devonian pedogenic limestones. Nature Phys. Sci. 243, 84–6.Google Scholar
Allen, J. R. L. 1974. Geomorphology and sub-surface structure of Siluro-Devonian alluvial plains shown by pedogenic carbonates. Nature, Lond. 249, 644.CrossRefGoogle Scholar
Aristarain, L. F. 1971. Chemical analyses of caliche profiles from the High Plains, New Mexico. J. Geol. 78, 201–12.CrossRefGoogle Scholar
Belt, E. S. 1968. Carboniferous continental sedimentation, Atlantic Provinces, Canada. Spec. Pap. geol. Soc. Am. 106, 127–76.Google Scholar
Bluck, B. J. 1967. Deposition of some Upper Old Red Sandstone Conglomerates in the Clyde area: a study in the significance of bedding. Scott. J. Geol. 3, 139–67.CrossRefGoogle Scholar
Brice, J. C. 1966. Erosion and deposition in the loess-mantled Great Plains, Medicine Creek Drainage Basin, Nebraska. Prof Pap. U.S. Geol. Surv. 352H. 255339.Google Scholar
Burgess, I. C. 1960. Fossil soils of the Upper Old Red Sandstone of South Ayrshire. Trans. geol. Soc. Glasg. 24, 138–63.CrossRefGoogle Scholar
Dury, G. H. 1971. Hydraulic geometry in: Chorley, R. J. (Ed.) Introduction to fluvial processes, pp. 146–56. Methuen, London.Google Scholar
Fisk, H. N. 1944. Geological investigation of the alluvial valley of the Lower Mississippi River. Rep. Mississ. River Comm. Vicksburg, Miss.Google Scholar
Gile, L. H. 1961. A classification of Ca horizons in soils of a desert region, Dona Ana County, New Mexico. Proc. Soil Sci. Soc. Am. 25, 5261.CrossRefGoogle Scholar
Gile, L. H. 1970. Soils of the Rio Grande Valley Border in Southern N. W. Mexico. Proc. Soil. Sci. Soc. Am. 34, 465–72.CrossRefGoogle Scholar
Gile, L. H. & Hawley, J. W. 1966. Periodic sedimentation and soil formation on an alluvial-fan piedmont in Southern New Mexico. Proc. Soil Sci. Soc. Am. 30, 261–8.CrossRefGoogle Scholar
Gile, L. H. & Hawley, J. W. 1969. Age and comparative development of desert soils at the Gardner Spring radiocarbon site, New Mexico. Proc. Soil Sci. Soc. Am. 32 709–16.CrossRefGoogle Scholar
Gile, L. H., Peterson, F. F. & Grossman, R. B. 1965. The K horizon: a master soil horizon of carbonate accumulation. Soil Sci. 99, 4752.CrossRefGoogle Scholar
Gile, L. H., Peterson, F. L. & Grossman, R. B. 1966. Morphological and genetic sequences of carbonate accumulation in desert soils.Soil Sci. 101, 347–60.CrossRefGoogle Scholar
Gole, C.V. & Chitale, S. V. 1966. Inland delta building activity of Kosi River. J. Hydraul. Div. Am. Soc. civ. Engrs 92, HY2, 111–26.Google Scholar
Goudie, A. 1973. Duricrusts in tropical and subtropical landscapes. Clarendon Press, Oxford.Google Scholar
Leeder, M. R. 1973. Sedimentology and palaeogeography of the Upper Old Red Sandstone in the Scottish Border Basin. Scott. J. Geol. 9, 117144.CrossRefGoogle Scholar
Leeder, M. R. 1974. Lower Border Group (Tournaisian) fluvio-deltaic sedimentation and palaeogeography of the Northumberland Basin. Proc. Yorks. Geol. Soc. 40, 129–30.CrossRefGoogle Scholar
McCave, I. N. 1969. Correlation of marine and nonmarine strata with example from Devonian of New York State. Bull. Am. Ass. Petrol Geol. 53, 155–62.Google Scholar
Nelson, J. G. 1966. Man and geomorphic processes in the Chemung Valley, New York and Pennsylvania. Ann. Ass. Am. Geog. 56, 2432.Google Scholar
Ollier, C. D. 1967. Landforms of the Newer Volcanic Province of Victoria. In: Jennings, J. N. & Mabutt, (Eds): Landform studies from Australia and New Guinea, 315–39. Cambridge University Press.Google Scholar
Reeves, C. C. Jr. 1970. Origin, classification and geologic history of caliche on the Southern High Plains, Texas and Eastern New Mexico. J. Geol. 78, 352–62.CrossRefGoogle Scholar
Ritter, B. F., Kinsey, W. F. & Kauffman, M. E. 1973. Overbank sedimentation in the Delaware River Valley during the last 6000 years. Science 170, 374–5.CrossRefGoogle Scholar
Roy, J. L. 1972. A pattern of rupture of the eastern North American-Western European palaeoblock. Earth Plan. Sci. Lett. 14, 103–14.CrossRefGoogle Scholar
Ruhe, R. V. 1965. Quaternary palaeopedology. In: Wright, H. E. & Frey, D. G. (Eds.): The Quaternary of the United States, 755–64.Google Scholar
Ruhe, R. V. 1969. Principles for dating pedogenic events in the Quaternary. Soil Sci. 103, 398401.CrossRefGoogle Scholar
Russell, R. J. 1954. Alluvial morphology of Anatolian rivers. Ann. Assoc. Am. Geog. 9, 363–91.CrossRefGoogle Scholar
Schumm, S. A. 1965. Quaternary palaeohydrology. In Wright, H. E. & Frey, D. G. (Eds.): The Quaternary of the United States, 783–93.Google Scholar
Schumm, S. A. & Lichty, R. W. (1963). Channel widening and flood plain construction, Cimarron River, Kansas. Prof. pap. U.S. geol. Surv. 352D, 7188.Google Scholar
Seghal, J. L. & Stoops, G. 1972. Pedogenic calcite accumulation in arid and semi-arid regions of the Indo-Gangetic alluvial plain of erstwlle Punjab (India) — Their morphology and origin. Geoderma, 8, 5972.Google Scholar
Swineford, A., Leonard, A. B. & Frye, G. C. 1958. Petrology of the Pliocene pisolitic limestone in the Great Plains. Bull State Geol. Surv. Kansas, 130, 97116.Google Scholar
Thompson, D. B. 1971. Sedimentation of the Triassic (Scythian) Red Pebbly Sandstones in the Cheshire Basin and its margins. Geol. J. 7, 183216.CrossRefGoogle Scholar
Williams, G. E. 1973. Late Quaternary piedmont sedimentation, soil formation and palaeoclimates in arid South Australia. J. Geomorph. 17, 102–25.Google Scholar
Williams, G. E. & Polach, H. A. 1971. Radio carbon dating of arid-zone calcareous palaeosols. Bull. geol. Soc. Am. 82, 3069–86.CrossRefGoogle Scholar
Wolman, M. G. & Leopold, L. B. 1957. River Flood Plains: some observations on their formation. Prof. Pap. U.S. geol. Surv. 282-C, 87107.Google Scholar
Woodrow, D. L., Fletcher, F. W. & Ahrnsbrak, W.F. 1973. Palaeogeography and palaeoclimate at the deposition sites of the Devonian Catskill and Old Red Facies. Bull. geol. Soc. Am. 84, 3051–64.2.0.CO;2>CrossRefGoogle Scholar