Hostname: page-component-7479d7b7d-pfhbr Total loading time: 0 Render date: 2024-07-08T16:12:06.622Z Has data issue: false hasContentIssue false

Pan-African volcanism: petrology and geochemistry of the Dokhan Volcanic Suite in the northern Nubian shield

Published online by Cambridge University Press:  01 May 2009

Abdel-Fattah M. Abdel-Rahman
Affiliation:
Department of Geology, Concordia University, 7141 Sherbrooke St. West, Montreal, Quebec H4B 1R6, Canada

Abstract

The Late Proterozoic Dokhan volcanic suite (620 Ma) of the northern Nubian shield is the product of Late Pan-African volcanism. The suite covers the entire spectrum from basalt to high-silica rhyolite and occurs as two units: a dark-coloured unit containing basalt-andesite-dacite, and a light-coloured unit encompassing dacite-rhyodacite-rhyolite. The latter unit is made up largely of ash flow tuffs and ign-imbrites that are locally interstratified with basalt and andesite lava flows. The suite forms a continuum in composition with a wide range of Si02 (48–77 wt%), CaO (0.1–8.9 wt%), Sr (81–906 ppm), Zr (85–340 ppm) as well as most other elements, and is moderately enriched in incompatible elements, including rare earth elements (REE). The suite exhibits fractionated, subparallel REE patterns that are similar overall to Andean andesites and ignimbrites. Well-defined major and trace element trends and fractionated REE profiles are consistent with a fractionated basalt to rhyolite calc-alkaline magma series. It is a typical calc-alka-line orogenic complex and exhibits mineralogical-geochemical traits of arc-related volcanism. The suite neither resembles products of extensional nor transitional tectonic regimes as previously thought, but was produced in a subduction-related tectonic environment. The mafic nature of the least-evolved rocks of the suite, along with its relatively low initial 87Sr/86Sr ratio (0.7039) are considered to indicate a mantle source. A mantle-derived basaltic magma fractionated, with amphibole and plagioclase dominating the fractionating assemblage, to produce the more felsic varieties, as suggested by major and trace element fractionation modelling.

Type
Articles
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdel-Rahman, A. M., 1990. Petrogenesis of early-orogenic diorites, tonalites and post-orogenic trondhjemites in the Nubian shield. Journal of Petrology 31, 12851312.CrossRefGoogle Scholar
Abdel-Rahman, A. M., & Doig, R., 1987. The Rb-Sr geochronological evolution of the Ras Gharib segment of the northern Nubian shield. Journal of the Geological Society, London 144, 577–86.CrossRefGoogle Scholar
Abdel-Rahman, A. M., & Martin, R. F., 1987. Late Pan-African magmatism and crustal development in northeastern Egypt. Geological Journal 22,281301.CrossRefGoogle Scholar
Abdel-Rahman, A. M., & Martin, R. F., 1989. Late Pan-African magmatism and crustal development in northeastern Egypt: Reply. Geological Journal 24,375–81.CrossRefGoogle Scholar
Abdel-Rahman, A. M., & Martin, R. F., 1990 a. The Mount Gharib A-type granite, Nubian shield: petrogenesis and role of metasomatism at the source. Contributions to Mineralogy and Petrology 104,173–83.CrossRefGoogle Scholar
Abdel-Rahman, A. M., & Martin, R. F., 1990 b. The Deloro anorogenic igneous complex, Madoc, Ontario. II. Evolution and Post-eruption metasomatism of the volcanic units. Canadian Mineralogist 28, 26785.Google Scholar
Miller, R. R., 1993. The Flowers River anorogenic caldera complex, Labrador: stratigraphy and evolution. Geological Association of Canada-Mineralogical Association of Canada, Abstract with Programs 18, A1.Google Scholar
Aldrich, L. T., Brown, G. F., Hedge, C., & Marvin, R. F., 1978. Geochronologic data for the Arabian shield. U.S. Geological Survey Open-file Report, 78–75.Google Scholar
Anderson, A. T., 1980. Significance of hornblende in calc-alkaline andesites and basalts. American Mineralogist 65, 837–51.Google Scholar
Arth, J. G., 1976. Behaviour of trace elements during magmatic processes — a summary of theoretical models and their applications. Journal of Research of the U.S. Geological Survey 4,41–7.Google Scholar
Barnes, S. J., & Gorton, M. P., 1984. Trace element analysis by neutron activation with a low flux reactor SLOWPOKE II.: results for international standards. Geostandards Newsletter 8, 1723.CrossRefGoogle Scholar
Basta, E. Z., Kamel, O. A., & Awadallah, M. F., 1979. Petrography of Gabal Dokhan volcanics, Eastern Desert, Egypt. Egyptian Journal of Geology 22, 145–71.Google Scholar
Basta, E. Z., Kotb, H., & Awadallah, M. F., 1980. Petrochemical and geochemical characteristics of the Dokhan formation at the type locality, Jabal Dokhan, Eastern Desert, Egypt. Institute of Applied Geology Bulletin, Jeddah 3, 122–40.Google Scholar
Batchelor, R. A., & Bowden, P., 1985. Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chemical Geology 48,4355.CrossRefGoogle Scholar
Best, M. G., Christiansen, E. H., & Blank, R. H., 1989. Oligocene caldera complex and calc-alkaline tuffs and lavas of the Indian Peak volcanic field, Nevada and Utah. Geological Society of America Bulletin 101, 1076–90.2.3.CO;2>CrossRefGoogle Scholar
Brown, G. C., 1980. Calc-alkaline magma genesis: the Pan-African contribution to crustal growth? Institute of Applied Geology Bulletin, Jeddah 3, 1929.CrossRefGoogle Scholar
Capan, U. Z., & Floyd, F. A., 1985. Geochemical and petro-graphic features of metabasites within units of the Ankara melange, Turkey. Ofioliti 10, 318.Google Scholar
Cawthorn, R. G., & O’;Hara, M. J., 1976. Amphibole fractionation in calc-alkaline magma genesis. American Journal of Science 276, 309–29.CrossRefGoogle Scholar
Darbyshire, D. P. R., Jackson, N. J., Ramsay, C. R., & Roobol, N. J., 1983. Rb—Sr isotope study of latest Proterozoic vol cano-sedimentary belts in the Central Arabian shield. Journal of the Geological Society, London 140, 203–13.CrossRefGoogle Scholar
Devore, G. W., 1983. The influence of submarine weathering of basalts on their partial melting during subduction. Lithos 16,203–13.CrossRefGoogle Scholar
Dietrich, R. V., 1968. Behavior of zirconium in certain artificial magmas under diverse P—T conditions. Lithos 1, 20–9.CrossRefGoogle Scholar
Duyverman, H. J., Harris, N. B. W., & Hawkesworth, C. J., 1982. Crustal accretion in the Pan-African: Nd and Sr isotope evidence from the Arabian shield. Earth and Planetary Science Letters 59, 315–26.CrossRefGoogle Scholar
El-Ramly, M. F., 1972. A new geological map for the basement rocks in the Eastern and South-Western Desert of Egypt. Annals of the Geological Survey of Egypt 2, 118.Google Scholar
El-Shazly, E. M., Hashad, A. H., Sayyah, T. A., & Bassyuni, F. A., 1973. Geochronology of Abu Swayel area, South Eastern Desert, Egypt. Egyptian Journal of Geology 17,118.Google Scholar
Fleck, R. J., Coleman, R. G., Cornwall, H. R., Greenwood, W. R., Hadley, D. G., Prinz, W. C., Rattle, J. S., & Schmidt, D. L., 1976. Potassium—argon geochronology of the Arabian Shield, Kingdom of Saudi-Arabia. Geological Society of America Bulletin 87,921.2.0.CO;2>CrossRefGoogle Scholar
Fleck, R. J., Greenwood, W. R., Anderson, R. E., & Schmidt, D. L., 1980. Rubidium—strontium geochronology and plate tectonic evolution of the southern part of the Arabian Shield. U.S. Geological Survey Professional paper 1131.Google Scholar
Francis, M. H., 1972. Geology of the basement complex in the North Eastern Desert between latitudes 27° 30 and 28° 00 N. Annals of the Geological Survey of Egypt 2,161–80.Google Scholar
Francis, P. W., Sparks, R. S. J., Hawkesworth, C. J., Thorpe, R. S., Pyle, D. M., Tait, S. R., Mantovani, M. S., & Mcdermott, F., 1989. Petrology and geochemistry of volcanic rocks of the Cerro Galan caldera, northwest Argentina. Geological Magazine 126,515–47.CrossRefGoogle Scholar
Gass, I. G., 1981. Pan-African Upper Proterozoic. plate tectonics of the Arabian—Nubian Shield. In Precambrian Plate Tectonics (ed. Kroner, A.), pp. 387405. Amsterdam: Elsevier.Google Scholar
Gass, I. G., 1982. Upper Proterozoic Pan-African calc-alkaline magmatism in north-eastern Africa and Arabia. In Andesites (ed. Thorpe, R. S.), pp. 591609. New York: John Wiley & Sons.Google Scholar
Ghanem, M., 1972. Geology of the basement rocks north of latitude 28°N, Eastern Desert, Ras Gharib area. Annals of the Geological Survey of Egypt 2,181 –97.Google Scholar
Gill, J. B., 1981. Orogenic Andesites and Plate Tectonics. New York: Springer-Verlag, 390 pp.CrossRefGoogle Scholar
Gökten, E., & Floyd, P. A., 1987. Geochemistry and tectonic environment of the Sarkisla area volcanic rocks in central Anatolia, Turkey. Mineralogical Magazine 51, 553–9.CrossRefGoogle Scholar
Graham, I. J., & Hackett, W. R., 1987. Petrology of calc-alkaline lavas from Ruapehu Volcano and related vents, Taupo Volcanic Zone, New Zealand. Journal of Petrology 28, 531–67.CrossRefGoogle Scholar
Green, T. H., 1980. Island arc and continent-building magmatism — a review of petrogenetic models based on experimental petrology and geochemistry. Tectonophysics 63, 367–85.CrossRefGoogle Scholar
Green, T. H., & Ringwood, A. E., 1968. Genesis of the calc-alkaline igneous rock suite. Contributions to Mineralogy and Petrology 18, 163–74.CrossRefGoogle Scholar
Greenberg, J. K., 1981. Characteristics and origin of Egyptian Younger Granites. Geological Society of America Bulletin 92, 749840.CrossRefGoogle Scholar
Hadley, D. G., 1973. Geology of the Sahl Al-Matran quadrangle, northwestern Hijaz, Kingdom of Saudi Arabia. Saudi Arabian Directorate General Mineral Resources Geological Map, Gm-6.Google Scholar
Hashad, A. H., 1980. Present status of geochronological data on the Egyptian basement complex. Institute of Applied Geology Bulletin, Jeddah 3, 3146.CrossRefGoogle Scholar
Hickmott, D. D., Sorensen, S. S., & Rogers, P. S. Z., 1992. Metasomatism in a subduction complex: constraints from microanalysis of trace elements in minerals from garnet amphibolite from the Catalina Schist. Geology 20,347–50.2.3.CO;2>CrossRefGoogle Scholar
Irvine, T. N., & Bragar, W. R. A., 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences 8, 523–48.CrossRefGoogle Scholar
Jarrar, G., Wachendorf, H., & Saffarini, F., 1992. A Late Proterozoic bimodal volcanic/subvolcanic suite from Wadi Araba, southwest Jordan. Precambrian Research 56, 5172.CrossRefGoogle Scholar
Kokelaar, P., 1986. Petrology and geochemistry of the Rhobell volcanic complex: Amphibole dominated fractionation at an Early Ordovician arc volcano in north Wales. Journal of Petrology 27,887914.CrossRefGoogle Scholar
Kroner, A., Linnebacher, P., Stern, R. J., Reischmann, T., Manton, W., & Hussein, I. M., 1991. Evolution of Pan-African island arc assemblages in the southern Red Sea Hills, Sudan, and in southwestern Arabia as exemplified by geochemistry and geochronology. In Proterozoic Crustal Evolution in the Late Proterozoic (eds Stern, R. J, and Van Schmus, W. R.), pp. 99118. Precambrian Research 53.Google Scholar
Kroner, A., Reischmann, T, Wust, H.-J., & Rashwan, A. A., 1988. Is there any Pre-Pan-African ≥ 950 Ma. Basement in the Eastern Desert of Egypt? In The Pan-African Belt of Northeast Africa and Adjacent areas (eds Gaby, S. El, and Greiling, R.O.), pp. 95119. Braunschweig/Wiesbaden: Friedrich Vieweg & Sohn.Google Scholar
Lopez-Escobar, L., 1984. Petrology and chemistry of volcanic rocks of the southern Andes. In Andean Magmatism, Chemical and Isotopic Constraints (eds Harmon, R. S., and Barreiro, B. A.), pp. 4771. Cheshire: Shiva.CrossRefGoogle Scholar
Marsh, B. D., & Carmichael, I. S. E. 1974. Benioff zone magmatism. Journal of Geophysical Research 79, 11961206.CrossRefGoogle Scholar
Masuda, A., Nakamura, N., & Tanaka, T., 1973. Fine structure of mutually normalized rare-earth patterns of chondrites. Geochimica Cosmochimica Acta 37,239–48.CrossRefGoogle Scholar
Miller, C. F., & Mittlefehldt, D. W., 1984. Extreme fractionation in felsic magma chambers: a product of liquid-state diffusion or fractional crystallization? Earth and Planetary Science Letters 68, 151–8.CrossRefGoogle Scholar
Neary, C. R., Gass, I. G., & Cavanagh, B. J., 1976. Granitic association of northeastern Sudan. Geological Society of America Bulletin 87, 1501–12.2.0.CO;2>CrossRefGoogle Scholar
Patterson, D. B., & Graham, I. J., 1988. Petrogenesis of andesitic lavas from Mangatepopo Valley and upper Tama Lake, Tangariro volcanic centre, New Zealand. Journal of Volcanology and Geothermal Research 35, 1729.CrossRefGoogle Scholar
Pearce, J. A., 1983. Role of sub-continental lithosphere in magma genesis at active continental margins. In Continental basalts and mantle xenoliths (eds Hawkesworth, C. J., and Norry, M. J.), pp. 230–49. Cheshire: Shiva.Google Scholar
Pearce, J. A., & Cann, J. R., 1973. Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth and Planetary Science Letters 19, 290300.CrossRefGoogle Scholar
Pearce, J. A., Harris, N. B. W., & Tindle, A. G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology 25, 956–83.CrossRefGoogle Scholar
Perry, F. V., Baldridge, W. C., Depaolo, D. J., & Shafiqullah, M., 1990. Evolution of a magmatic system during continental extension: the Mount Taylor volcanic field, New Mexico. Journal of Geophysical Research 95, 19327–83.CrossRefGoogle Scholar
Philippot, P., & Silverstone, J. E., 1991. Trace-element-rich brines in eclogitic veins: Implications for fluid composition and transport during subduction. Contributions to Mineralogy and Petrology 106,417–30.CrossRefGoogle Scholar
Ressetar, R., & Monrad, J. R., 1983. Chemical composition and tectonic setting of the Dokhan volcanic formation, Eastern Desert, Egypt. Journal of African Earth Sciences 1, 103–12.Google Scholar
Ries, A. C., Shackleton, R. M., Graham, R. H., & Fitches, W. R., 1983. Pan-African structures, ophiolites and melange in the Eastern Desert of Egypt: a traverse at 26°N. Journal of the Geological Society, London 140, 7595.CrossRefGoogle Scholar
Ringwood, A. E., 1990. Slab-mantle interactions 3. Petrogenesis of intraplate magmas and structure of the upper mantle. Chemical Geology 82, 187207.CrossRefGoogle Scholar
Romick, J. D., Kay, S. M., & Kay, R. W., 1992. The influence of amphibole fractionation on the evolution of calc-alkaline andesite and dacite tephra from the central Aleutians, Alaska. Contributions to Mineralogy and Petrology 112, 101–18.CrossRefGoogle Scholar
Roobol, M. J., Ramsay, C. R., Jackson, N. J., & Darbyshire, D. P. F., 1983. Late Proterozoic lavas of the central Arabian Shield -evolution of an ancient volcanic arc system. Journal of the Geological Society, London 140, 185202.CrossRefGoogle Scholar
Ross, C. S., & Smith, R. L., 1961. Ash-flow tuffs, their origin, geologic relations and identification. U.S. Geological Survey Professional Paper 366, 81 pp.Google Scholar
Saunders, A. D., & Tarney, J., 1979. The geochemistry of basalts from a back-arc spreading centre in the East Scotia Sea. Geochimica Cosmochimica Acta 43,555–72.CrossRefGoogle Scholar
Schmidt, D. L., & Brown, G. F., 1982. Chemistry of volcanic and plutonic rocks of the Precambrian shield, Kingdom of Saudi Arabia. Precambrian Research (Abstracts) 16, A37.CrossRefGoogle Scholar
Schurmann, H. M., 1966. The Pre-Cambrian Along the Gulf of Suez and the Northern Part of the Red Sea. Leiden: Brill, E. J., 186 pp.Google Scholar
Segev, A., 1987. The age of the latest Precambrian volcanism in southern Israel, northeastern Sinai and southwestern Jordan — a re-evaluation. Precambrian Research 36, 277–85.CrossRefGoogle Scholar
SparkS, R. S. J., Self, S., & Walker, G. P. L., 1973. Products of ignimbrite eruptions. Geology 1, 115–18.2.0.CO;2>CrossRefGoogle Scholar
Stern, R. J., 1981. Petrogenesis and tectonic setting of Late Precambrian ensimatic volcanic rocks, central eastern desert of Egypt. Precambrian Research 16, 195230.CrossRefGoogle Scholar
Stern, R. J., & Gottfried, D., 1986. Petrogenesis of a Late Precambrian 575–600 Ma bimodal suite in northeast Africa. Contributions to Mineralogy and Petrology 92, 492–501.CrossRefGoogle Scholar
Stern, R. J., Gottfried, D., & Hedge, C. E., 1984. Late Precambrian rifting and crustal evolution in the northeastern Desert of Egypt. Geology 12, 168–72.2.0.CO;2>CrossRefGoogle Scholar
Stern, R. J., & Hedge, C. E., 1985. Geochronologic and isotopic constraints on Late Precambrian crustal evolution in the Eastern Desert of Egypt. American Journal of Science 285, 97127.CrossRefGoogle Scholar
Stern, R. J., Sellers, G., & Gottfried, D., 1988. Bimodal Dyke swarms in the North Eastern Desert of Egypt: Significance for the origin of Late Precambrian ‘A-type’ granites in Northern Afro-Arabia. In The Pan-African Belt of Northeast Africa and adjacent areas (eds El-Gaby, S., and Greiling, R. O.), pp. 147–79. Braunschweig/Wiesbaden: Friedrich Vieweg & Sohn.Google Scholar
Stuckless, J. S., Nakomo, I. T., Wenner, D. B., & Van Trump, G., 1983. Geochemistry and Uranium favourability of the post orogenic granites of the northwestern Arabian shield, Kingdom of Saudi Arabia. Institute of Applied Geology Bulletin, Jeddah 3, 195209.Google Scholar
Sun, S.-S., & Mcdonough, W. F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In Magmatism in the Ocean Basins (eds Saunders, A. D., and Norry, M. J.), pp. 313–45. Journal of the Geological Society, London, Special Publication no. 42.Google Scholar
Taylor, S. R., & Gorton, M. P., 1977. Geochemical application of spark source mass spectrography. III. Element sensitivity, precision and accuracy. Geochimica Cosmochimica Acta 41, 1375–80.CrossRefGoogle Scholar
Vail, J. R., 1985. Pan African Late Precambrian tectonic terrains and the reconstruction of the Arabian-Nubian shield. Geology 13, 839–42.2.0.CO;2>CrossRefGoogle Scholar
Vail, J. R., 1990. Geochronology of the Sudan. Overseas Geology and Mineral Resources no. 66. London: British Geological Survey; HMSO, 58 pp.Google Scholar
Watson, E. B., 1979. Zircon saturation in felsic liquids: experimental results and applications to trace element geochemistry. Contributions to Mineralogy and Petrology 70, 40719.CrossRefGoogle Scholar
Winchester, J. A., & Floyd, P. A., 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology 20, 325–43.CrossRefGoogle Scholar
Wright, T. L., & Doherty, P. C., 1970. A linear programming and least squares computer method for solving petrologic mixing problems. Geological Society of America Bulletin 81 19952008.CrossRefGoogle Scholar