Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-22T06:11:39.782Z Has data issue: false hasContentIssue false

Palaeoscolecid scleritome fragments with Hadimopanella plates from the early Cambrian of South Australia

Published online by Cambridge University Press:  16 June 2009

TIMOTHY P. TOPPER*
Affiliation:
Department of Biological Sciences, Macquarie University, NSW 2109, Australia
GLENN A. BROCK
Affiliation:
Department of Biological Sciences, Macquarie University, NSW 2109, Australia
CHRISTIAN B. SKOVSTED
Affiliation:
Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, SE-752 36 Uppsala, Sweden
JOHN R. PATERSON
Affiliation:
Division of Earth Sciences, School of Environmental & Rural Science, University of New England, Armidale NSW 2351, Australia
*
Author for correspondence: [email protected]

Abstract

Phosphatized articulated palaeoscolecid scleritome fragments with attached Hadimopanella Gedik, 1977 plates are described from the lower Cambrian Mernmerna Formation of South Australia. Hadimopanella is principally known from single, isolated, button-shaped, phosphatic sclerites. The new articulated material from South Australia reveals for the first time the configuration of plates referable to Hadimopanella within the scleritome. The scleritome fragments represent the main trunk sections of the cuticle with anterior and posterior terminations lacking. Each annulus on the trunk is ornamented by rows of irregularly alternating Hadimopanella plates. The large majority of plates display a single, centrally located, conical node referable to the form species H. apicata Wrona, 1982. However, individual plates display considerable morphological variation with plates situated along the flattened trunk margin identical to the form species H. antarctica Wrona, 1987. The South Australian material displays the detailed scleritome configuration of cuticular plates and platelets and demonstrates irrefutably that plates of the form species H. apicata and H. antarctica occur as mineralized cuticular elements on the same palaeoscolecid scleritome.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bather, F. A. 1920. Protoscolex latus, a new “worm” from Ludlow Beds. Annals and Magazine of Natural History (Series 9) 5, 124–32.CrossRefGoogle Scholar
Bendix-Almgreen, S. E. & Peel, J. S. 1988. Hadimopanella from the Lower Cambrian of North Greenland: structure and affinities. Bulletin of the Geological Society of Denmark 37, 83103.CrossRefGoogle Scholar
Bengtson, S. 1977. Early Cambrian button-shaped phosphatic microfossils from the Siberian Platform. Palaeontology 20, 751–62.Google Scholar
Bengtson, S., Conway Morris, S., Cooper, B. J., Jell, P. A. & Runnegar, B. N. 1990. Early Cambrian fossils from South Australia. Memoirs of the Association of Australasian Palaeontologists 9, 1364.Google Scholar
Boogaard, M. Van Den. 1983. The occurrence of Hadimopanella oezgueli Gedik in the Lancara Formation in NW Spain. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, Series B 86, 331–41.Google Scholar
Boogaard, M. Van Den. 1989 a. A problematic microfossil, Hadimopanella? coronata sp. nov., from the Ordovician of Estonia. Rijksmuseum van Geologie en Mineralogie, Series B 92, 179–90.Google Scholar
Boogaard, M. Van Den. 1989 b. Isolated tubercles of some Palaeoscolecida. Scripta Geologica 90, 112.Google Scholar
Brock, G. A. & Cooper, B. J. 1993. Shelly fossils from the Early Cambrian (Toyonian) Wirrealpa, Aroona Creek, and Ramsay Limestones of South Australia. Journal of Paleontology 67, 758–87.CrossRefGoogle Scholar
Brock, G. A. & Paterson, J. R. 2004. A new species of Tannuella (Helcionellida, Mollusca) from the Early Cambrian of South Australia. Memoirs of the Association of Australasian Palaeontologists 30, 133–43.Google Scholar
Budd, G. E. 2001. Tardigrades as ‘stem-group arthropods′: the evidence from the Cambrian fauna. Zoologischer Anzeiger 240, 265–79.CrossRefGoogle Scholar
Conway Morris, S. 1977. Fossil priapulid worms. Special Papers in Palaeontology 20, 195.Google Scholar
Conway Morris, S. 1985. Non-skeletalized lower invertebrate fossils: a review. In The origins and relationships of lower invertebrates (eds Conway Morris, S., George, J. D., Gibson, R. & Platt, H. M.), pp. 343–59. Systematics Association, Special Volume 28. Oxford: Clarendon Press.Google Scholar
Conway Morris, S. 1997. The cuticular structure of the 495-Myr-old type species of the fossil worm Palaeoscolex, P. piscatorum (?Priapulida). Zoological Journal of the Linnean Society 119, 6982.CrossRefGoogle Scholar
Conway Morris, S., Pickerill, R. K. & Harland, T. L. 1982. A possible annelid from the Trenton Limestone (Ordovician) of Quebec, with a review of fossil oligochaetes and other annulate worms. Canadian Journal of Earth Sciences 19 (11), 2150–7.CrossRefGoogle Scholar
Conway Morris, S. & Robison, R. A. 1986. Middle Cambrian priapulids and other soft-bodied fossils from Utah and Spain. The University of Kansas Paleontological Contributions 117, 122.Google Scholar
Ethington, R. L. & Clark, D. L. 1965. Lower Ordovician conodonts and other microfossils from the Columbia Ice Fields Section, Alberta, Canada. Brigham Young University Geological Studies 12, 185205.Google Scholar
Gedik, I. 1977. Conodont stratigraphy in the Middle Taurus. Bulletin of the Geological Society of Turkey 20, 3548 (in Turkish with English abstract).Google Scholar
Gedik, I. 1989. Hadimopanellid biostratigraphy in the Cambrian of the Western Taurids: A new biostratigraphic tool in the subdivision of Cambrian System. Geological Bulletin of Turkey 32, 6577 (in Turkish with English abstract).Google Scholar
Glaessner, M. F. 1979. Lower Cambrian Crustacea and annelid worms from Kangaroo Island, South Australia. Alcheringa 3, 2131.CrossRefGoogle Scholar
Hinz, I. 1987. The Lower Cambrian microfauna of Comley and Rushton, Shropshire/England. Palaeontographica A 198, 41100.Google Scholar
Hinz, I., Kraft, P., Mergl, M. & Müller, K. J. 1990. The problematic Hadimopanella, Kaimenella, Milaculum and Utahphospha identified as sclerites of Palaeoscolecida. Lethaia 23, 217–21.CrossRefGoogle Scholar
Hou, X.-G. & Bergström, J. 1994. Palaeoscolecid worms may be nematomorphs rather than annelids. Lethaia 27, 1117.Google Scholar
Hou, X.-G. & Sun, W.-G. 1988. Discovery of Chengjiang fauna at Meishucun, Jinning, Yunnan. Acta Palaeontologica Sinica 27, 112 (in Chinese with English summary).Google Scholar
Ivantsov, A. Yu. & Wrona, R. 2004. Articulated palaeoscolecid sclerite arrays from the Lower Cambrian of eastern Siberia. Acta Geologica Polonica 54 (1), 122.Google Scholar
Ivantsov, A. Yu & Zhuravlev, A. Yu. 2005. Paleontological Descriptions: Cephalorhynchs. In Unikal′nye sinskiye mestonakhozhdeniya rannekembriyskikh organizmov (ed. Ponomarenko, A. G.), pp. 61–72. Trudy Paleontologicheskogo Instituta 284 (in Russian with English summary).Google Scholar
Jago, J. B., Zang, Wen-Long, Sun, Xiaowen, Brock, G. A., Paterson, J. R. & Skovsted, C. B. 2006. A review of the Cambrian biostratigraphy of South Australia. Palaeoworld 15 (3–4), 406–23.CrossRefGoogle Scholar
Kraft, P. & Mergl, M. 1989. Worm-like fossils (Palaeoscolecida; ?Chaetognata) from the Lower Ordovician of Bohemia. Sbornik Geologickych Ved Paleontologie 30, 936.Google Scholar
Maas, A., Huang, D., Chen, J., Waloszek, D. & Braun, A. 2007 a. Maotianshan-Shale nemathelminths – Morphology, biology, and the phylogeny of Nemathelminthes. Palaeogeography, Palaeoclimatology, Palaeoecology 254, 288306.CrossRefGoogle Scholar
Maas, A., Waloszek, D., Haug, J. T. & Müller, K. J. 2007 b. A possible larval roundworm from the Cambrian ‘Orsten′ and its bearing on the phylogeny of Cycloneuralia. Memoirs of the Association of Australasian Palaeontologists 34, 499519.Google Scholar
Märss, T. 1988. Early Palaeozoic hadimopanellids of Estonia and Kirgizia (USSR). Proceedings of the Academy of Sciences of the Estonian SSR, Geology 37, 1017.CrossRefGoogle Scholar
Miller, S. A. & Faber, C. 1892. Some new species of new structural parts of fossils. Journal of the Cincinnati Society of Natural History 15, 75100.Google Scholar
Müller, K. J. 1973. Milaculum n. g. ein phosphatisches Mikrofossil aus dem Altpaläozoikum. Paläontologische Zeitschrift 47, 217–28.CrossRefGoogle Scholar
Müller, K. J. & Hinz-Schallreuter, I. 1993. Palaeoscolecid worms from the Middle Cambrian of Australia. Palaeontology 36 (3), 543–92.Google Scholar
Paterson, J. R. & Brock, G. A. 2007. Early Cambrian trilobites from Angorichina, Flinders Ranges, South Australia, with a new assemblage from the Pararaia bunyerooensis Zone. Journal of Paleontology 81, 116–42.CrossRefGoogle Scholar
Paterson, J. R., Brock, G. A. & Skovsted, C. B. 2009. Oikozetetes from the early Cambrian of South Australia: implications for halkieriid affinities and functional morphology. Lethaia 42, 199203.CrossRefGoogle Scholar
Peel, J. S. & Larsen, N. H. 1984. Hadimopanella apicata from the Lower Cambrian of western North Greenland. Rapport Grønlands Geologiske Undersøgelse 121, 8996.CrossRefGoogle Scholar
Repetski, J. E. 1981. An Ordovician occurrence of Utahphospha Müller and Miller. Journal of Paleontology 55, 395400.Google Scholar
Robison, R. A. 1969. Annelids from the Middle Cambrian Spence Shale of Utah. Journal of Paleontology 43, 1169–73.Google Scholar
Ruedemann, R. 1925 a. The Utica and Lorraine Formations of New York, Part 2, Systematic Palaeontology. New York State Museum Bulletin 262, 5140.Google Scholar
Ruedemann, R. 1925 b. Some Silurian (Ontarian) faunas of New York. New York State Museum Bulletin 265, 583.Google Scholar
Skovsted, C. B. 2006. Small Shelly Fauna from the Upper Lower Cambrian Bastion and Ella Formations, North-East Greenland. Journal of Paleontology 80 (6), 10871112.CrossRefGoogle Scholar
Skovsted, C. B., Brock, G. A. & Paterson, J. R. 2006. Bivalved arthropods from the Lower Cambrian Mernmerna Formation, Arrowie Basin, South Australia and their implications for identification of Cambrian ‘small shelly fossils′. Memoirs of the Association of Australasian Palaeontologists 32, 741.Google Scholar
Topper, T. P., Skovsted, C. B., Brock, G. A. & Paterson, J. R. 2007. New bradoriids from the lower Cambrian Mernmerna Formation, South Australia: systematics, biostratigraphy and biogeography. Memoirs of the Association of Australasian Palaeontologists 33, 67100.Google Scholar
Ulrich, E. O. 1878. Observations on fossil annelids and descriptions of some new forms. Journal of the Cincinnati Society of Natural History 1, 8791.Google Scholar
Wang, Chengyuan. 1990. Some Llandovery phosphatic microfossils from South China. Acta Palaeontologica Sinica 29, 548–56 (in Chinese with English summary).Google Scholar
Whittard, W. F. 1953. Palaeoscolex piscatorum gen. et sp. nov., a worm from the Tremadocian of Shropshire. Quarterly Journal of the Geological Society of London 109, 125–35.CrossRefGoogle Scholar
Wrona, R. 1982. Early Cambrian phosphatic microfossils from southern Spitsbergen (Horsund region). Palaeontologia Polonica 43, 916.Google Scholar
Wrona, R. 1987. Cambrian microfossil Hadimopanella Gedik from glacial erratics in West Antarctica. In Paleontological results of the Polish Antarctic Expeditions. Part I (ed. Gaèdzicki, A.), pp. 37–48. Palaeontologia Polonica 49.Google Scholar
Wrona, R. 2004. Cambrian microfossils from glacial erratics of King George Island, Antarctica. Acta Palaeontologica Polonica 49, 1356.Google Scholar
Wrona, R. & Hamdi, B. 2001. Palaeoscolecid sclerites from the Upper Cambrian Mila Formation of the Shahmirzad section, Alborz Mountains, northern Iran. Acta Geologica Polonica 51, 101–7.Google Scholar
Zhang, Xiguang & Pratt, B. R. 1996. Early Cambrian palaeoscolecid cuticles from Shaanxi, China. Journal of Paleontology 70, 275–9.CrossRefGoogle Scholar