Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T16:50:22.489Z Has data issue: false hasContentIssue false

Origin of Ultrabasic and Basic Gneiss Masses in the Lewisian

Published online by Cambridge University Press:  01 May 2009

M. J. O'Hara
Affiliation:
Grant Institute of Geology, West Mains Road, Edinburgh, 9.

Abstract

It has been suggested that the ultrabasic and basic gneiss masses in the Lewisian near Scourie and Drumbeg are layered igneous bodies possibly containing primary igneous mineral assemblages. This hypothesis is reviewed in all its aspects and rejected on the grounds of field relationships, mineralogy, and geochemistry.

Type
Articles
Copyright
Copyright © Cambridge University Press 1965

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Battey, M. H., 1960. Observations on the peridotites and pyroxenites of the Jotunheim complex in Norway. Rept. 21st Int. geol. Cong., 13, 198207.Google Scholar
Bloxam, T. W., and Allen, J. B., 1960. Glaucophane-schist, eclogite and associated rocks from Knockormal in the Girvan-Ballantrae complex, South Ayrshire. Trans. roy. Soc. Edinb., 64, 128.Google Scholar
Bowes, D. R., and Jones, K. A., 1958. Sedimentary features and tectonics in the Dalradian of western Perthshire. Trans. Edinb. geol. Soc., 17, 133140.CrossRefGoogle Scholar
Bowes, D. R. Wright, A. E., and Park, R. G., 1961. Field relations of rocks containing coexisting pyroxenes. Geol. Mag., 98, 530–1.Google Scholar
Bowes, D. R. Wright, A. E., and Park, R. G. 1964. Layered intrusive rocks in the Lewisian of the North West Highlands of Scotland. Quart. J. geol. Soc. Lond., 120, 153192.CrossRefGoogle Scholar
Eskola, P., 1921. On the eclogites of Norway. Skr. Vidensk Selsk., Christ., 8, 1118.Google Scholar
Gees, R. A., 1956. Ein Beitrag zum Ophiolith-problem behandelt aneinigen Beispielen aus dem Gebiet vom Klosters-Davos (Graubünden). Schweiz. min. petr. Mitt., 36, 454488.Google Scholar
Green, D. H., 1964. The petrogenesis of the high-temperature peridotite intrusion in the Lizard area, Cornwall. J. Petrol., 5, 134188.CrossRefGoogle Scholar
Grubenmann, U., 1908. Der granatolivinfels der Gordunotals, und seine Begleitgesteine. Vjschr. naturf. Ges. Zürich, 53, 129156.Google Scholar
Hess, H. H., 1949. Chemical composition and optical properties of common clinopyroxenes. Amer. Min., 36, 621666.Google Scholar
Hess, H. H., 1952. Orthopyroxenes of the Bushveld type, ion substitutions and changes in unit cell dimensions. Amer. J. Sci., Bowen Vol., 173188.Google Scholar
Howie, R. A., 1955. The geochemistry of the charnockite series of Madras, India. Trans. roy. Soc. Edinb., 62, 725768.CrossRefGoogle Scholar
Lacroix, A., 1900. Les roches basiques accompagnant les Iherzolites et les ophites des Pyrénées. Rept. 8th Int. geol. Congr., Paris, 806838.Google Scholar
Lacroix, A., 1917. Les peridotites des Pyrénées et les autres roches intrusives non-feldspathiques qui les accompagnant. C.R. Acad. Sci. Paris., 165, 381–7.Google Scholar
Muir, I. D., and Tilley, C. E., 1958. The composition of coexisting pyroxenes in metamorphic assemblages. Geol. Mag., 95, 403–9.Google Scholar
O'Hara, M. J., 1960. Co-existing pyroxenes in metamorphic rocks. Geol. Mag., 97, 498503.Google Scholar
O'Hara, M. J., 1961. Zoned ultrabasic and basic gneiss masses in the early Lewisian metamorphic complex at Scourie, Sutherland. J. Petrol., 2, 248276.Google Scholar
O'Hara, M. J. and Mercy, E. L. P., 1963. Petrology and petrogenesis of some garneti ferous peridotites. Trans. roy. Soc. Edinb., 65, 251314.Google Scholar
Oosterom, M. G., 1962. The ultramafites and layered gabbro sequences in the granulite facies rocks of Stjernöy (Finnmark, Norway). Leid. geol. Meded., 28, 179296.Google Scholar
Peach, B. N., Horne, J. Gunn, W. Clouoh, C. T., and Hinxman, L. W., 1907. The geological structure of the North West Highlands of Scotland. Mem. geol. Surv. U.K.Google Scholar
Peters, Tj., 1963. Mineralogie und Petrographie des Totalpserpentins bei Davos. Schweiz. min. petr. Mitt., 43, 529685.Google Scholar
Ross, C. S. M. D. Foster, , and Myers, A. T., 1954. Origin of dunites and of olivine-rich inclusions in basaltic rocks. Amer. Min., 39, 693734.Google Scholar
Sutton, J., and Watson, J., 1951. The pre-Torridonian metamorphic history of the Loch Torridon and Scourie areas in the North West Highlands of Scotland and its bearing on the chronological classification of the Lewisian. Quart. J. geol. Soc. Land., 106, 241308.Google Scholar
Turner, F. J., and Verhoogen, J., 1960. Igneous and Metamorphic Petrology. McGraw-Hill, New York.Google Scholar
Tuttle, O. F., and Bowen, N. L., 1958. Origin of granite in the light of experimental studies in the system NaAlSi3O8-KAlSi3O8-SiO2-H2O. Mem. geol. Soc. Amer., 74, 153 pp.Google Scholar
Vogt, P., 1962. Geologisch-petrographische Untersuchungen im Peridotitstock vom Finero. Schweiz. min. petr. Mitt., 42, 59126.Google Scholar
Wager, L. R., 1960. The major element variation of the layered series of the Skaergaard intrusion and a re-estimation of the average composition of the hidden layered series and of the successive residual magmas. J. Petrol., 1, 364398.Google Scholar
Wager, L. R., and Deer, W. A., 1939. Geological investigations in East Greenland. Part III: The petrology of the Skaergaard intrusion, Kangerdlugssuaq, East Greenland. Medd. om Grønland., 105, 352 pp.Google Scholar
Yoder, H. S. Jr., and Tilley, C. E., 1962. Origin of basalt magmas: an experimental study of natural and synthetic rock systems. J. Petrol., 3, 342532.CrossRefGoogle Scholar