Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-23T17:20:36.890Z Has data issue: false hasContentIssue false

Origin and tectonic evolution of the NE basement of Oman: a window into the Neoproterozoic accretionary growth of India?

Published online by Cambridge University Press:  07 March 2017

BRANDON L. ALESSIO*
Affiliation:
Centre for Tectonics, Resources and Exploration (TRaX), Department of Earth Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
MORGAN L. BLADES
Affiliation:
Centre for Tectonics, Resources and Exploration (TRaX), Department of Earth Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
GEORGE MURRAY
Affiliation:
Centre for Tectonics, Resources and Exploration (TRaX), Department of Earth Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
BENJAMIN THORPE
Affiliation:
Centre for Tectonics, Resources and Exploration (TRaX), Department of Earth Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
ALAN S. COLLINS
Affiliation:
Centre for Tectonics, Resources and Exploration (TRaX), Department of Earth Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
DAVID E. KELSEY
Affiliation:
Centre for Tectonics, Resources and Exploration (TRaX), Department of Earth Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
JOHN FODEN
Affiliation:
Centre for Tectonics, Resources and Exploration (TRaX), Department of Earth Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
JUSTIN PAYNE
Affiliation:
Centre for Tectonics, Resources and Exploration (TRaX), School of Built and Natural Environments, University of South Australia, Adelaide, SA 5095, Australia
SALAH AL-KHIRBASH
Affiliation:
Sultan Qaboos University, Al Khoudh 123, Muscat, Oman
FRED JOURDAN
Affiliation:
Western Australian Argon Facility, Curtin University, GPO Box U1987, Perth, WA 6845, Australia.
*
Author for correspondence: [email protected]

Abstract

The Omani basement is located spatially distant from the dominantly juvenile Arabian–Nubian Shield (ANS) to its west, and its relationship to the amalgamation of those arc terranes has yet to be properly constrained. The Jebel Ja'alan (NE Oman) basement inlier provides an excellent opportunity to better understand the Neoproterozoic tectonic geography of Oman and its relationship to the ANS. To understand the origin of this basement inlier, we present new radiogenic isotopic data from igneous bodies in Jebel Ja'alan. U–Pb and 40Ar/39Ar geochronological data are used to constrain the timing of magmatism and metamorphism in the jebel. Positive εHf and εNd values indicate a juvenile origin for the igneous lithologies. Phase equilibria modelling is used to constrain the metamorphic conditions recorded by basement. Pressure–temperature (PT) pseudosections show that basement schists followed a clockwise P–T path, reaching peak metamorphic conditions of c. 650–700°C at 4–7.5 kbar, corresponding to a thermal gradient of c. 90–160°C/kbar. From the calculated thermal gradient, in conjunction with collected trace-element data, we interpret that the Jebel Ja'alan basement formed in an arc environment. Geochronological data indicate that this juvenile arc formed during Tonian time and is older than basement further west in Oman. We argue that the difference in timing is related to westwards arc accretion and migration, which implies that the Omani basement represents its own tectonic domain separate to the ANS and may be the leading edge of the Neoproterozoic accretionary margin of India.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abu-Alam, T., Hassan, M., Stüwe, K., Meyer, S. & Passchier, C. 2014. Multistage tectonism and metamorphism during Gondwana Collision: Baladiyah Complex, Saudi Arabia. Journal of Petrology 55 (10), 1941–64.Google Scholar
Abu El-Enen, M. M. 2011. Geochemistry, provenance, and metamorphic evolution of Gabal Samra Neoproterozoic metapelites, Sinai, Egypt. Journal of African Earth Sciences 59 (2–3), 269–82.Google Scholar
Allen, P. A. 2007. The Huqf Supergroup of Oman: basin development and context for Neoproterozoic glaciation. Earth-Science Reviews 84 (3), 139–85.CrossRefGoogle Scholar
Allen, P. A., Leather, J. & Brasier, M. D. 2004. The Neoproterozoic Fiq glaciation and its aftermath, Huqf supergroup of Oman. Basin Research 16 (4), 507–34.Google Scholar
Allen, P. A., Leather, J., Brasier, M. D., Rieu, R., McCarron, M., le Guerroué, E., Etienne, J. L. & Cozzi, A. 2011. The Abu Mahara Group (Ghubrah and Fiq formations), Jabal Akhdar, Oman. In The Geological Record of Neoproterozoic Glaciations (eds Arnaud, E., Halverson, G. P. & Shields, G.), pp. 251–62. Geological Society of London, Memoir no. 36(1).Google Scholar
Allmendinger, R. W., Cardozo, N. & Fisher, D. M. 2011. Structural Geology Algorithms: Vectors and Tensors. Cambridge: Cambridge University Press.Google Scholar
Ashwal, L., Solanki, A., Pandit, M., Corfu, F., Hendriks, B., Burke, K. & Torsvik, T. 2013. Geochronology and geochemistry of Neoproterozoic Mt. Abu granitoids, NW India: regional correlation and implications for Rodinia paleogeography. Precambrian Research 236, 265–81.Google Scholar
Baier, J., Audétat, A. & Keppler, H. 2008. The origin of the negative niobium tantalum anomaly in subduction zone magmas. Earth and Planetary Science Letters 267 (1–2), 290300.CrossRefGoogle Scholar
Bard, J. P. 1983. Metamorphism of an obducted island arc: example of the Kohistan sequence (Pakistan) in the Himalayan collided range. Earth and Planetary Science Letters 65 (1), 133–44.CrossRefGoogle Scholar
Be'eri-Shlevin, Y., Eyal, M., Eyal, Y., Whitehouse, M. J. & Litvinovsky, B. 2012. The Sa'al volcano-sedimentary complex (Sinai, Egypt): a latest Mesoproterozoic volcanic arc in the northern Arabian Nubian Shield. Geology 40 (5), 403–6.Google Scholar
Blades, M. L., Collins, A. S., Foden, J., Payne, J. L., Xu, X., Alemu, T., Woldetinsae, G., Clark, C. & Taylor, R. J. 2015. Age and hafnium isotopic evolution of the Didesa and Kemashi domains, western Ethiopia. Precambrian Research 270, 267–84.Google Scholar
Bowring, S. A., Grotzinger, J. P., Condon, D. J., Ramezani, J., Newall, M. J. & Allen, P. A. 2007. Geochronologic constraints on the chronostratigraphic framework of the Neoproterozoic Huqf Supergroup, Sultanate of Oman. American Journal of Science 307 (10), 1097–145.Google Scholar
Brown, M. 2007. Metamorphic conditions in orogenic belts: a record of secular change. International Geology Review 49 (3), 193234.Google Scholar
Buick, I., Allen, C., Pandit, M., Rubatto, D. & Hermann, J. 2006. The Proterozoic magmatic and metamorphic history of the Banded Gneiss Complex, central Rajasthan, India: LA-ICP-MS U–Pb zircon constraints. Precambrian Research 151 (1), 119–42.Google Scholar
Cardozo, N. & Allmendinger, R. W. 2013. Spherical projections with OSXStereonet. Computers & Geosciences 51, 193205.Google Scholar
Collins, A. S. 2006. Madagascar and the amalgamation of Central Gondwana. Gondwana Research 9 (1), 316.CrossRefGoogle Scholar
Collins, A. S. & Pisarevsky, S. A. 2005. Amalgamating eastern Gondwana: the evolution of the Circum-Indian Orogens. Earth-Science Reviews 71 (3), 229–70.Google Scholar
Corfu, F., Hanchar, J. M., Hoskin, P. W. & Kinny, P. 2003. Atlas of zircon textures. Reviews in mineralogy and geochemistry 53 (1), 469500.Google Scholar
Corrie, S. L. & Kohn, M. J. 2008. Trace-element distributions in silicates during prograde metamorphic reactions: Implications for monazite formation. Journal of Metamorphic Geology 26 (4), 451–64.Google Scholar
Cox, G. M., Lewis, C. J., Collins, A. S., Halverson, G. P., Jourdan, F., Foden, J., Nettle, D. & Kattan, F. 2012. Ediacaran terrane accretion within the Arabian–Nubian Shield. Gondwana Research 21 (2), 341–52.Google Scholar
Cozzi, A., Rea, G. & Craig, J. 2012. From global geology to hydrocarbon exploration: Ediacaran-Early Cambrian petroleum plays of India, Pakistan and Oman. In Geology and Hydrocarbon Potential of Neoproterozoic–Cambrian Basins in Asia (eds Bhat, G. M., Craig, J., Thurrow, J. W., Thusu, B. & Cozzi, A.), pp, 131–62. Geological Society of London, Special Publication no. 366.Google Scholar
Davies, R. & Crawford, A. 1971. Petrography and age of the rocks of Bulland Hill, Kirana Hills, Sarghoda District, west Pakistan. Geological Magazine 108 (03), 235–46.Google Scholar
Davis, J. K., Meert, J. G. & Pandit, M. K. 2014. Paleomagnetic analysis of the Marwar Supergroup, Rajasthan, India and proposed interbasinal correlations. Journal of Asian Earth Sciences 91, 339–51.CrossRefGoogle Scholar
Deb, M., Thorpe, R., Krstic, D., Corfu, F. & Davis, D. 2001. Zircon U–Pb and galena Pb isotope evidence for an approximate 1.0 Ga terrane constituting the western margin of the Aravalli–Delhi orogenic belt, northwestern India. Precambrian Research 108 (3), 195213.Google Scholar
Denèle, Y., Leroy, S., Pelleter, E., Pik, R., Talbot, J.-Y. & Khanbarri, K. 2013. The Cryogenian arc formation and successive high-K calc-alkaline plutons of Socotra Island (Yemen). In Lithosphere Dynamics and Sedimentary Basins: The Arabian Plate and Analogues (eds Hosani, K. A., Roure, F., Ellison, R. & Lokier, S.), pp. 335–60. Berlin, Heidelberg: Springer.Google Scholar
Dhuime, B., Hawkesworth, C. & Cawood, P. 2011. When continents formed. Science 331 (6014), 154–5.Google Scholar
Diener, J. & Powell, R. 2010. Influence of ferric iron on the stability of mineral assemblages. Journal of Metamorphic Geology 28 (6), 599613.CrossRefGoogle Scholar
Doebrich, J. L., Al-Jehani, A. M., Siddiqui, A. A., Hayes, T. S., Wooden, J. L. & Johnson, P. R. 2007. Geology and metallogeny of the Ar Rayn terrane, eastern Arabian shield: evolution of a Neoproterozoic continental-margin arc during assembly of Gondwana within the East African Orogen. Precambrian Research 158 (1), 1750.Google Scholar
Elburg, M. & Foden, J. 1998. Temporal changes in arc magma geochemistry, northern Sulawesi, Indonesia. Earth and Planetary Science Letters 163 (1), 381–98.Google Scholar
Faryad, S. W., Collett, S., Finger, F., Sergeev, S. A., Čopjaková, R. & Siman, P. 2016. The Kabul Block (Afghanistan), a segment of the Columbia Supercontinent, with a Neoproterozoic metamorphic overprint. Gondwana Research 34, 221–40.Google Scholar
Filbrandt, J., Nolan, S. & Ries, A. 1990. Late Cretaceous and early Tertiary evolution of Jebel Ja'alan and adjacent areas, NE Oman. In The Geology and Tectonics of the Oman Region (eds Robertson, A. H. F., Searle, M. P. & Reis, A. C.), pp. 697714. Geological Society of London, Special Publication no. 49.Google Scholar
Fitton, J. & Gill, R. 1970. The oxidation of ferrous iron in rocks during mechanical grinding. Geochimica et Cosmochimica Acta 34 (4), 518–24.Google Scholar
Fritz, H., Dallmeyer, D. R., Wallbrecher, E., Loizenbauer, J., Hoinkes, G., Neumayr, P. & Khudeir, A. A. 2002. Neoproterozoic tectonothermal evolution of the Central Eastern Desert, Egypt: a slow velocity tectonic process of core complex exhumation. Journal of African Earth Sciences 34 (3–4), 137–55.Google Scholar
Gass, I., Ries, A., Shackleton, R. & Smewing, J. 1990. Tectonics, geochronology and geochemistry of the Precambrian rocks of Oman. In The Geology and Tectonics of the Oman Region (eds Robertson, A. H. F., Searle, M. P. & Reis, A. C.), pp. 585–99. Geological Society of London, Special Publication no. 49.Google Scholar
Goldstein, S., O'nions, R. & Hamilton, P. 1984. A Sm-Nd isotopic study of atmospheric dusts and particulates from major river systems. Earth and Planetary Science Letters 70 (2), 221–36.Google Scholar
Gregory, L. C., Meert, J. G., Bingen, B., Pandit, M. K. & Torsvik, T. H. 2009. Paleomagnetism and geochronology of the Malani Igneous Suite, Northwest India: implications for the configuration of Rodinia and the assembly of Gondwana. Precambrian Research 170 (1), 1326.Google Scholar
Griffin, W., Wang, X., Jackson, S., Pearson, N., O'Reilly, S. Y., Xu, X. & Zhou, X. 2002. Zircon chemistry and magma mixing, SE China: in-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos 61 (3), 237–69.Google Scholar
Haldar, S. & Deb, M. 2001. Geology and mineralization of Rajpura-Dariba lead-zinc belt, Rajasthan. In Sediment-hosted Lead-Zink Deposit Modeling Program (eds Deb, M. & Goodfellow, W. D.), pp. 177–87. New Delhi: Delhi-Udaipur, Elsevier.Google Scholar
Halverson, G. P., Hurtgen, M. T., Porter, S. M. & Collins, A. S. 2009. Neoproterozoic-Cambrian biogeochemical evolution. Developments in Precambrian Geology 16, 351–65.Google Scholar
Hames, W. & Bowring, S. 1994. An empirical evaluation of the argon diffusion geometry in muscovite. Earth and Planetary Science Letters 124 (1), 161–9.CrossRefGoogle Scholar
Harrison, T. M., Célérier, J., Aikman, A. B., Hermann, J. & Heizler, M. T. 2009. Diffusion of 40 Ar in muscovite. Geochimica et Cosmochimica Acta 73 (4), 1039–51.Google Scholar
Hawkesworth, C. & Kemp, A. 2006. Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution. Chemical Geology 226 (3), 144–62.Google Scholar
Heikal, M. T. S., Al-Khirbash, S. A., Hassan, A. M., Al-Kotbah, A. M. & Al-Selwi, K. M. 2014. Lithostratigraphy, deformation history, and tectonic evolution of the basement rocks, Republic of Yemen: an overview. Arabian Journal of Geosciences 7 (5), 2007–18.CrossRefGoogle Scholar
Hodges, K. 1991. Pressure-temperature paths. Annual Review of Earth and Planetary Sciences 19, 207.CrossRefGoogle Scholar
Hoffman, P. F., Kaufman, A. J., Halverson, G. P. & Schrag, D. P. 1998. A Neoproterozoic snowball earth. Science 281 (5381), 1342–6.Google Scholar
Holland, T. & Powell, R. 2011. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. Journal of Metamorphic Geology 29 (3), 333–83.Google Scholar
Immenhauser, A., Schreurs, G., Gnos, E., Oterdoom, H. W. & Hartmann, B. 2000. Late Palaeozoic to Neogene geodynamic evolution of the northeastern Oman margin. Geological Magazine 137 (1), 118.Google Scholar
Jackson, S. E., Pearson, N. J., Griffin, W. L. & Belousova, E. A. 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chemical Geology 211 (1–2), 4769.CrossRefGoogle Scholar
Jarrar, G. H., Theye, T., Yaseen, N., Whitehouse, M., Pease, V. & Passchier, C. 2013. Geochemistry and P–T–t evolution of the Abu-Barqa Metamorphic Suite, SW Jordan, and implications for the tectonics of the northern Arabian–Nubian Shield. Precambrian Research 239, 5678.CrossRefGoogle Scholar
Johnson, P., Andresen, A., Collins, A., Fowler, A., Fritz, H., Ghebreab, W., Kusky, T. & Stern, R. 2011. Late Cryogenian–Ediacaran history of the Arabian–Nubian Shield: a review of depositional, plutonic, structural, and tectonic events in the closing stages of the northern East African Orogen. Journal of African Earth Sciences 61 (3), 167232.Google Scholar
Johnson, P. R. & Stewart, I. C. 1995. Magnetically inferred basement structure in central Saudi Arabia. Tectonophysics 245 (1), 3752.Google Scholar
Johnson, P. R. & Woldehaimanot, B. 2003. Development of the Arabian-Nubian Shield: perspectives on accretion and deformation in the northern East African Orogen and the assembly of Gondwana. In Proterozoic East Gondwana: Supercontinent Assembly and Breakup (eds Yoshida, M., Windley, B. E. & Dasgupta, S.), pp. 289325. Geological Society of London, Special Publication no. 206.Google Scholar
Just, J., Schulz, B., de Wall, H., Jourdan, F. & Pandit, M. K. 2011. Monazite CHIME/EPMA dating of Erinpura granitoid deformation: Implications for Neoproterozoic tectono-thermal evolution of NW India. Gondwana Research 19 (2), 402–12.Google Scholar
Kelsey, D. E. & Hand, M. 2015. On ultrahigh temperature crustal metamorphism: Phase equilibria, trace element thermometry, bulk composition, heat sources, timescales and tectonic settings. Geoscience Frontiers 6 (3), 311–56.Google Scholar
Kil, Y. & Jung, H. 2015. LA-ICP-MS analysis of natural rock samples using XRF glass beads. Geosciences Journal 19 (1), 4552.Google Scholar
Korhonen, F., Powell, R. & Stout, J. 2012. Stability of sapphirine+quartz in the oxidized rocks of the Wilson Lake terrane, Labrador: calculated equilibria in NCKFMASHTO. Journal of Metamorphic Geology 30 (1), 2136.Google Scholar
Kröner, A. & Stern, R. J. 2004. Pan-African Orogeny. In Encyclopedia of Geology (eds Selley, R. C., Cocks, R. M. & Plimer, I. R.), pp. 112. Amsterdam: Elsevier.Google Scholar
Leather, J., Allen, P. A., Brasier, M. D. & Cozzi, A. 2002. Neoproterozoic snowball Earth under scrutiny: Evidence from the Fiq glaciation of Oman. Geology 30 (10), 891–4.Google Scholar
Li, Z.-X., Bogdanova, S., Collins, A., Davidson, A., De Waele, B., Ernst, R., Fitzsimons, I., Fuck, R., Gladkochub, D. & Jacobs, J. 2008. Assembly, configuration, and break-up history of Rodinia: a synthesis. Precambrian Research 160 (1), 179210.Google Scholar
Meert, J. G. 2003. A synopsis of events related to the assembly of eastern Gondwana. Tectonophysics 362 (1), 140.Google Scholar
Meert, J. G. & Lieberman, B. S. 2008. The Neoproterozoic assembly of Gondwana and its relationship to the Ediacaran–Cambrian radiation. Gondwana Research 14 (1), 521.Google Scholar
Meert, J. G., Pandit, M. K. & Kamenov, G. D. 2013. Further geochronological and paleomagnetic constraints on Malani (and pre-Malani) magmatism in NW India. Tectonophysics 608, 1254–67.Google Scholar
Mercolli, I., Briner, A. P., Frei, R., Schönberg, R., Nägler, T. F., Kramers, J. & Peters, T. 2006. Lithostratigraphy and geochronology of the Neoproterozoic crystalline basement of Salalah, Dhofar, Sultanate of Oman. Precambrian Research 145 (3), 182206.Google Scholar
Merdith, A., Muller, D., Collins, A., Williams, S., Pisarevsky, S., Foden, J., Archibald, D., Blades, M. L., Alessio, B., Armistead, S., Plavsa, D. & Clark, C. In press. A full-plate global reconstruction of the Neoproterozoic. Gondwana Research.Google Scholar
Miller, D. M., Goldstein, S. L. & Langmuir, C. H. 1994. Cerium/lead and lead isotope ratios in arc magmas and the enrichment of lead in the continents. Nature 368 (6471), 514–20.Google Scholar
Morrissey, L. J., Hand, M. & Kelsey, D. E. 2015. Multi-stage metamorphism in the Rayner–Eastern Ghats Terrane: P–T–t constraints from the northern Prince Charles Mountains, east Antarctica. Precambrian Research 267, 137–63.Google Scholar
Pallister, J. S., Cole, J. C., Stoeser, D. B. & Quick, J. E. 1990. Use and abuse of crustal accretion calculations. Geology 18 (1), 35–9.Google Scholar
Pandey, B., Gupta, J., Sarma, K. & Sastry, C. 1997. Sm-Nd, Pb-Pb and Rb-Sr geochronology and petrogenesis of the mafic dyke swarm of Mahbubnagar, South India: implications for Paleoproterozoic crustal evolution of the Eastern Dharwar Craton. Precambrian Research 84 (3), 181–96.Google Scholar
Pandit, M., Carter, L., Ashwal, L., Tucker, R., Torsvik, T., Jamtveit, B. & Bhushan, S. 2003. Age, petrogenesis and significance of 1Ga granitoids and related rocks from the Sendra area, Aravalli Craton, NW India. Journal of Asian Earth Sciences 22 (4), 363–81.Google Scholar
Payne, J., Hand, M., Barovich, K. & Wade, B. 2008. Temporal constraints on the timing of high-grade metamorphism in the northern Gawler Craton: implications for assembly of the Australian Proterozoic. Australian Journal of Earth Sciences 55 (5), 623–40.Google Scholar
Payne, J. L., McInerney, D. J., Barovich, K. M., Kirkland, C. L., Pearson, N. J. & Hand, M. 2016. Strengths and limitations of zircon Lu-Hf and O isotopes in modelling crustal growth. Lithos 248, 175–92.Google Scholar
Payne, J. L., Pearson, N. J., Grant, K. J. & Halverson, G. P. 2013. Reassessment of relative oxide formation rates and molecular interferences on in situ lutetium–hafnium analysis with laser ablation MC-ICP-MS. Journal of Analytical Atomic Spectrometry 28 (7), 1068–79.Google Scholar
Powell, R., White, R., Green, E., Holland, T. & Diener, J. 2014. On parameterizing thermodynamic descriptions of minerals for petrological calculations. Journal of Metamorphic Geology 32 (3), 245–60.Google Scholar
Rantakokko, N. E., Whitehouse, M. J., Pease, V. & Windley, B. F. 2014. Neoproterozoic evolution of the eastern Arabian basement based on a refined geochronology of the Marbat region, Sultanate of Oman. In Tectonic Evolution of the Oman Mountains (eds Rollinson, H. R., Searle, M. P., Abbasi, I. A., Al-Lazki, A. I. & Kindi, M. H. Al), pp. 107–27. Geological Society of London, Special Publication no. 392.Google Scholar
Raza, M., Khan, A., Bhardwaj, V. & Rais, S. 2012. Geochemistry of Mesoproterozoic sedimentary rocks of upper Vindhyan Group, southeastern Rajasthan and implications for weathering history, composition and tectonic setting of continental crust in the northern part of Indian shield. Journal of Asian Earth Sciences 48, 160–72.Google Scholar
Renne, P. R., Balco, G., Ludwig, K. R., Mundil, R. & Min, K. 2011. Response to the comment by WH Schwarz et al. on “Joint determination of 40 K decay constants and 40 Ar∗/40 K for the Fish Canyon sanidine standard, and improved accuracy for 40 Ar/39 Ar geochronology” by Renne, PR et al. (2010). Geochimica et Cosmochimica Acta 75 (17), 5097–100.Google Scholar
Rieu, R., Allen, P. A., Cozzi, A., Kosler, J. & Bussy, F. 2007. A composite stratigraphy for the Neoproterozoic Huqf Supergroup of Oman: integrating new litho-, chemo- and chronostratigraphic data of the Mirbat area, southern Oman. Journal of the Geological Society 164 (5), 9971009.Google Scholar
Robinson, F., Foden, J. & Collins, A. 2015a. Geochemical and isotopic constraints on island arc, synorogenic, post-orogenic and anorogenic granitoids in the Arabian Shield, Saudi Arabia. Lithos 220, 97115.Google Scholar
Robinson, F., Foden, J. & Collins, A. 2015 b. Zircon geochemical and geochronological constraints on contaminated and Enriched Mantle sources beneath the Arabian Shield, Saudi Arabia. The Journal of Geology 123 (5), 463–89.Google Scholar
Robinson, F., Foden, J., Collins, A. & Payne, J. 2014. Arabian Shield magmatic cycles and their relationship with Gondwana assembly: insights from zircon U–Pb and Hf isotopes. Earth and Planetary Science Letters 408, 207–25.Google Scholar
Roger, J., Bechennec, F., Janjou, D., Le Metour, J., Wyns, R. & Beurrier, M. 1991. Geological Map of Ja'alan, Sheet NF 40–8 E, 1–100 000. Directorate General of Minerals, Oman Ministry of Petroleum and Minerals.Google Scholar
Sassi, F., Visona, D., Ferrara, G., Gatto, G., Ibrahim, H., Said, A. & Tonarini, S. 1993. The crystalline basement of Northern Somalia: lithostratigraphy and sequence of events. In Geology and Mineral Resources of Somalia and Surrounding Regions (eds Abbate, E., Sagri, M. & Sassi, F.), pp. 340. 1st Agron Oltemare, Firenze, Relaz. Monogr. 113.Google Scholar
Sláma, J., Košler, J., Condon, D. J., Crowley, J. L., Gerdes, A., Hanchar, J. M., Horstwood, M. S., Morris, G. A., Nasdala, L. & Norberg, N. 2008. Plešovice zircon—a new natural reference material for U–Pb and Hf isotopic microanalysis. Chemical Geology 249 (1), 135.Google Scholar
Smith, H. A. & Barreiro, B. 1990. Monazite U-Pb dating of staurolite grade metamorphism in pelitic schists. Contributions to Mineralogy and Petrology 105 (5), 602–15.Google Scholar
Stern, R. J. 1994. Arc-assembly and continental collision in the Neoproterozoic African orogen: implications for the consolidation of Gondwanaland. Annual Review of Earth and Planetary Sciences 22, 319–51.Google Scholar
Stern, R. J. & Johnson, P. 2010. Continental lithosphere of the Arabian Plate: a geologic, petrologic, and geophysical synthesis. Earth-Science Reviews 101 (1), 2967.CrossRefGoogle Scholar
Stüwe, K. 2007. Geodynamics of the Lithosphere: An Introduction. Berlin, Heidelberg: Springer Science & Business Media.Google Scholar
Sun, S.-S. & McDonough, W. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In Magmatism in the Ocean Basins (eds Saunders, A. D. & Norry, M. J.), pp. 313–45. Geological Society of London, Special Publication no. 42.Google Scholar
Thomas, R. J., De Waele, B., Schofield, D., Goodenough, K. M., Horstwood, M., Tucker, R., Bauer, W., Annells, R., Howard, K. & Walsh, G. 2009. Geological evolution of the Neoproterozoic Bemarivo Belt, northern Madagascar. Precambrian Research 172 (3), 279300.Google Scholar
Torsvik, T., Carter, L., Ashwal, L., Bhushan, S., Pandit, M. & Jamtveit, B. 2001. Rodinia refined or obscured: palaeomagnetism of the Malani igneous suite (NW India). Precambrian Research 108 (3), 319–33.Google Scholar
Tuccillo, M., Essene, E. & Van Der Pluijm, B. 1990. Growth and retrograde zoning in garnets from high-grade, metapelites: Implications for pressure-temperature paths. Geology 18 (9), 839–42.Google Scholar
Tucker, R., Ashwal, L. & Torsvik, T. 2001. U–Pb geochronology of Seychelles granitoids: a Neoproterozoic continental arc fragment. Earth and Planetary Science Letters 187 (1), 2738.Google Scholar
Van Lente, B., Ashwal, L., Pandit, M., Bowring, S. & Torsvik, T. 2009. Neoproterozoic hydrothermally altered basaltic rocks from Rajasthan, northwest India: implications for late Precambrian tectonic evolution of the Aravalli Craton. Precambrian Research 170 (3), 202–22.Google Scholar
Wade, B., Hand, M., Maidment, D., Close, D. & Scrimgeour, I. 2008. Origin of metasedimentary and igneous rocks from the Entia Dome, eastern Arunta region, central Australia: a U–Pb LA-ICPMS, SHRIMP and Sm–Nd isotope study. Australian Journal of Earth Sciences 55 (5), 703–19.Google Scholar
Wendt, I. & Carl, C. 1991. The statistical distribution of the mean squared weighted deviation. Chemical Geology: Isotope Geoscience Section 86 (4), 275–85.Google Scholar
Westerhof, A. B., Härmä, P., Isabirye, E., Katto, E., Koistinen, T., Kuosmanen, E., Lehto, T., Lehtonen, M. I., Mäkitie, H. & Manninen, T. 2014. Geology and Geodynamic Development of Uganda with Explanation of the 1: 1,000,000 Scale Geological Map. Espoo, Finland: Geological Survey of Finland.Google Scholar
White, R., Powell, R., Holland, T., Johnson, T. & Green, E. 2014. New mineral activity–composition relations for thermodynamic calculations in metapelitic systems. Journal of Metamorphic Geology 32 (3), 261–86.Google Scholar
White, R., Powell, R. & Johnson, T. 2014. The effect of Mn on mineral stability in metapelites revisited: new a–x relations for manganese-bearing minerals. Journal of Metamorphic Geology 32 (8), 809–28.Google Scholar
Whitehouse, M., Pease, V. & Al Khirbash, S. 2016. Neoproterozoic crustal growth at the margin of the East Gondwana continent - age and isotopic constraints from the easternmost inliers of Oman. International Geology Review 58 (14), 2046–64.Google Scholar
Whitehouse, M. J., Windley, B. F., Stoeser, D. B., Al-Khirbash, S., Ba-Bttat, M. A. & Haider, A. 2001. Precambrian basement character of Yemen and correlations with Saudi Arabia and Somalia. Precambrian Research 105 (2), 357–69.Google Scholar
Wing, B. A., Ferry, J. M. & Harrison, T. M. 2003. Prograde destruction and formation of monazite and allanite during contact and regional metamorphism of pelites: petrology and geochronology. Contributions to Mineralogy and Petrology 145 (2), 228–50.CrossRefGoogle Scholar
Woodhead, J., Hergt, J., Shelley, M., Eggins, S. & Kemp, R. 2004. Zircon Hf-isotope analysis with an excimer laser, depth profiling, ablation of complex geometries, and concomitant age estimation. Chemical Geology 209 (1), 121–35.Google Scholar
Worthing, M. 2005. Petrology and geochronology of a Neoproterozoic dyke swarm from Marbat, South Oman. Journal of African Earth Sciences 41 (3), 248–65.Google Scholar
Yeshanew, F. G., Pease, V., Whitehouse, M. J. & Al-Khirbash, S. 2015. Zircon U–Pb geochronology and Nd isotope systematics of the Abas terrane, Yemen: implications for Neoproterozoic crust reworking events. Precambrian Research 267, 106–20.Google Scholar
Zhao, G., Wilde, S. A., Cawood, P. A. & Sun, M. 2001. Archean blocks and their boundaries in the North China Craton: lithological, geochemical, structural and P–T path constraints and tectonic evolution. Precambrian Research 107 (1), 4573.Google Scholar
Supplementary material: File

Alessio supplementary material

Alessio supplementary material 1

Download Alessio supplementary material(File)
File 2.8 MB