Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-22T12:48:04.889Z Has data issue: false hasContentIssue false

Onset of the Ordovician cephalopod radiation – evidence from the Rochdale Formation (middle Early Ordovician, Stairsian) in eastern New York

Published online by Cambridge University Press:  09 May 2008

BJÖRN KRÖGER*
Affiliation:
Université Lille 1, Laboratoire Géosystèmes (UMR 8157 CNRS), UFR des Sciences de la Terre – bâtiment SN5, 59655 Villeneuve d'Ascq cedex, France; formerly Museum für Naturkunde, Humboldt Universität zu Berlin, Invalidenstrasse 43, D-10115 Berlin, Germany
ED LANDING
Affiliation:
New York State Museum, Albany, New York 12230, USA
*
*Author for correspondence: [email protected]

Abstract

The Rochdale Formation of eastern New York (= Fort Ann and lower Bascom formations, designations abandoned) is now recognized to record the earliest stages of the Great Ordovician Radiation of cephalopods. The earliest Bassleroceratidae, Tarphyceratidae and endoceridans on the east Laurentian shallow carbonate platform occur in the upper, thrombolite-bearing member of the Rochdale. This fauna demonstrates that the earliest radiation of Ordovician nautiloids took place in the late Tremadocian and is best recorded in tropical platform facies. Revision of this cephalopod fauna based on approximately 190 specimens collected along a 200 km, N–S belt in easternmost New York has provided new information on inter- and intraspecific variation of earlier described species. The ellesmerocerid Vassaroceras and the endocerids Mcqueenoceras and Paraendoceras are emended. New taxa include Bassleroceras champlainense sp. nov. and B. triangulum sp. nov., Mccluskiceras comstockense gen. et sp. nov., Exoclitendoceras rochdalense gen. et sp. nov. and Paraendoceras depressum sp. nov. A rank abundance plot of 146 specimens from a locality in the Lake Champlain lowlands provides information on the community structure of a nautiloid fauna in which the longiconic cyrtoconic Bassleroceras is shown to dominate strongly. The nautiloid community structure of the Rochdale Formation is similar to that of the underlying Tribes Hill Formation (late early Tremadocian) with respect to the depositional setting, diversity and evenness but displays a remarkably increased taxonomic distinctness.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balashov, Z. G. 1955. Ordovician nautiloids. In Field Atlas of the Ordovician and Silurian fauna of the Siberian Platform (eds Team of Authors), pp. 87104. St Petersburg: Gostechgeologistat (in Russian).Google Scholar
Balashov, Z. G. 1968. Ordovician Endoceratoidea of the USSR. St Petersburg: Isdatel'stvo Leningradskogo Universiteta, 170 pp. (in Russian).Google Scholar
Bassler, R. S. 1915. Bibliographic index of American Ordovician and Silurian Fossils. Bulletin of the United States National Museum 92, 1521 pp.Google Scholar
Billings, E. 1859. Fossils of the Calciferous Sandrock, including those of a deposit of white limestone at Mingan, supposed to belong to the formation. Canadian Naturalist and Geologist, Proceedings of the Society of Natural History of Montreal 4, 345–67.Google Scholar
Billings, E. 1865. Palaeozoic fossils. Containing descriptions and figures of new or little known species of organic remains from the Silurian rocks. Geological Survey of Canada, Montreal 1, 169394.Google Scholar
Brugière, J. G. 1789. Histoire naturelle des vers. Vol. 1.1. Encyclopedie methodique 6, 1757.Google Scholar
Cady, W. M. 1945. Stratigraphy and structure of west-central Vermont. Geological Society of America Bulletin 56, 515–58.CrossRefGoogle Scholar
Chao, A. 1984. Non-parametric estimation of the number of classes in a population. Scandinavian Journal of Statistics 11, 265–70.Google Scholar
Chazdon, R. L., Colwell, R. K., Denslow, J. S. & Guariguata, M. R. 1998. Statistical methods for estimating species richness of woody regeneration in primary and secondary rain forests of NE Costa Rica. In Forest biodiversity research, monitoring and modeling: Conceptual background and Old World case studies (eds Dallmeier, F. & Comiskey, J. A.), pp. 285309. Paris: Parthenon Publishing, 671 pp.Google Scholar
Clarke, J. M. & Schuchert, C. 1899. The nomenclature of the New York series of geological formations. Science (new series) 1899, 876–7.Google Scholar
Clarke, K. R. & Warwick, R. M. 1998. A taxonomic distinctness index and its statistical properties. Journal of Applied Ecology 35, 523–31.CrossRefGoogle Scholar
Clarke, K. R. & Warwick, R. M. 1999. The taxonomic distinctness measure of biodiversity: weighting of step lengths between hierarchical levels. Marine Ecology Progress Series 184, 21–9.CrossRefGoogle Scholar
Cloud, P. E. & Barnes, V. 1948. The Ellenburger Group of central Texas. University of Texas Publications 4621, 473 pp.Google Scholar
Colwell, R. K. 2005. EstimateS: Statistical estimation of species richness and shared species from samples. Version 7.5. User's Guide and application published at: http://purl.oclc.org/estimates.Google Scholar
Dwight, W. B. 1879. On some recent explorations in the Wappinger valley limestone of Dutchess Co., N. Y. No. 2. Calciferous as well as Trenton fossils in the Wappinger Limestone at Rochdale and a Trenton locality at Newburgh, N. Y. American Journal of Science, third series 17, 289–92.Google Scholar
Dwight, W. B. 1880. Recent explorations in the Wappinger valley limestones and other formations of Dutchess Co., N. Y. No. 2. Calciferous as well as Trenton fossils in the Wappinger Limestone at Rochdale and a Trenton locality at Newburgh, N. Y. American Journal of Science, third series 17 (101), 50–4.CrossRefGoogle Scholar
Dwight, W. B. 1881. Further discoveries of fossils in the Wappinger Valley or Barnegat limestone. American Journal of Science, third series 21, 78–9.Google Scholar
Dwight, W. B. 1884. Recent explorations in the Wappinger valley limestones and other formations of Dutchess Co., N. Y. No. 4. Descriptions of Calciferous (?) fossils. American Journal of Science 27, 249–59.CrossRefGoogle Scholar
Dwight, W. B. 1889. Recent explorations in the Wappinger valley limestones and other formations of Dutchess Co., N. Y. No. 8. Discovery of Calciferous fossils in the Millerton–Fishkill limestone belt; also in a belt near Rhinebeck. American Journal of Science 38, 150–83.Google Scholar
Dzik, J. 1984. Phylogeny of the Nautiloidea. Palaeontologia Polonica 45, 203 pp.Google Scholar
Evans, D. H. 2005. The Lower and Middle Ordovician cephalopod faunas of England and Wales. Monograph of the Palaeontographical Society 628, 81 pp.Google Scholar
Fisher, D. W. 1984. Bedrock geology of the Glens Falls–Whitehall region, New York. New York State Museum Map and Chart Series 35, 58 pp.Google Scholar
Flower, R. H. 1941. Notes on the structure and phylogeny of eurysiphonate cephalopods. Palaeontographica Americana 3 (13), 551.Google Scholar
Flower, R. H. 1952. Cephalopods from the Harding and Manitou Formations of Colorado. Journal of Paleontology 26, 505–27.Google Scholar
Flower, R. H. 1955. Status of endoceroid classification. Journal of Paleontology 29, 329–71.Google Scholar
Flower, R. H. 1956. Cephalopods from the Canadian of Maryland. Journal of Paleontology 3, 7596.Google Scholar
Flower, R. H. 1964 a. The nautiloid order Ellesmeroceratida (Cephalopoda). New Mexico Institute of Mining and Technology, State Bureau of Mines and Mineral Resources, Memoir 12, 164 pp.Google Scholar
Flower, R. H. 1964 b. Early Paleozoic in New Mexico. In Southwestern New Mexico, Guidebook 16th field conference (eds Fitzsimmons, J. P. & Balk, C. L.), pp. 112–13. Socorro: New Mexico Geological Society.Google Scholar
Flower, R. H. 1964 c. Nautiloid shell morphology. New Mexico Institute of Mining and Technology, State Bureau of Mines and Mineral Resources, Memoir 13, 177.Google Scholar
Flower, R. H. 1968. Fossils from the Fort Ann Formation. New Mexico Institute of Mining and Technology, State Bureau of Mines and Mineral Resources, Memoir 22, 2934.Google Scholar
Flower, R. H. 1969. Early Paleozoic of New Mexico and El Paso region. In The Ordovician symposium (ed. LeMone, D. V.), pp. 31103. El Paso Geological Society and Permian Basin Society of Economic Paleontologists and Mineralogists.Google Scholar
Flower, R. H. 1976. Ordovician cephalopod faunas and their role in correlation. In The Ordovician System: Proceedings of a Palaeontological Association Symposium, Birmingham (England), September 1974 (ed. Bassett, M. G.), pp. 523–52. Cardiff: University of Wales & National Museum of Wales.Google Scholar
Flower, R. H. & Kummel, B. 1950. A classification of the Nautiloidea. Journal of Paleontology 24, 604–16.Google Scholar
Foerste, A. F. 1921. Notes on Arctic Ordovician and Silurian Cephalopods, chiefly from Boothia Felix-King William Land, Bache Peninsula, and Bear Island. Denison University Bulletin, Journal of the Scientific Laboratories 19, 247306.Google Scholar
Foerste, A. F. 1924. Notes on American Paleozoic cephalopods. Denison University Bulletin, Journal of the Scientific Laboratories 20, 193268.Google Scholar
Foerste, A. F. 1925. Notes on cephalopod genera, chiefly coiled Silurian forms. Denison University Bulletin, Journal of the Scientific Laboratories 21, 169.Google Scholar
Foerste, A. F. 1936. Silurian cephalopods of the Port Daniel area on Gaspe Peninsula, Eastern Canada. Denison University Bulletin, Journal of the Scientific Laboratories 31, 2192.Google Scholar
Frey, R. C., Beresi, M. S., Evans, D. H., King, A. H. & Percival, I. G. 2004. Nautiloid cephalopods. In The Great Ordovician Biodiversification Event (eds Webby, B. D., Paris, F., Droser, M. L. & Percival, I. G.), pp. 209–13. New York: Columbia University Press.CrossRefGoogle Scholar
Furnish, W. M. & Glenister, B. F. 1964 a. Nautiloidea–Ellesmerocerida. In Treatise on Invertebrate Paleontology, Part K, Mollusca 3 (ed. Moore, R. C.), pp. K12959. Boulder, Colorado and Lawrence, Kansas: Geological Society of America and the University of Kansas Press.Google Scholar
Furnish, W. M. & Glenister, B. F. 1964 b. Nautiloidea–Tarphycerida. In Treatise on Invertebrate Paleontology, Part K, Mollusca 3 (ed. Moore, R. C.), pp. K34368. Boulder, Colorado and Lawrence, Kansas: Geological Society of America and the University of Kansas Press.Google Scholar
Hall, J. 1847. Natural History of New York, Palaeontology, Vol. 1, containing descriptions of the organic remains of the lower division of the New-York system (equivalent of the Lower Silurian rocks of Europe). Albany: Van Benthuysen, 338 pp.Google Scholar
Hintze, L. F. 1953. Lower Ordovician trilobites from Western Utah and eastern Nevada. Utah Geological and Mineralogical Survey, Bulletin 48, 1249.Google Scholar
Hyatt, A. 1894. Phylogeny of an acquired characteristic. Proceedings of the American Philosophical Society 32, 349647.Google Scholar
Hyatt, A. 1900. Cephalopoda. In Textbook of Paleontology, 1 (ed. von Zittel, K. A.; 2nd edn, trans./ed. Eastmann, C. R.), pp. 502–92. London: Macmillan and Co., 839 pp.Google Scholar
Knopf, E. B. 1927. Some results of recent work in the southern Taconic area. American Journal of Science 214, 429–58.CrossRefGoogle Scholar
Knopf, E. B. 1962. Stratigraphy and structure of the Stissing Mountain area, Dutchess County, New York. Stanford University Publications, Geological Sciences 7, 155.Google Scholar
Kobayashi, T. 1934. The Cambro-Ordovician formations and faunas of South Chosen. Palaeontology. Part II. Lower Ordovician faunas. Journal of the Faculty of Sciences of the Imperial University of Tokyo, Section II, Geology, Mineralogy, Geography, Seismology 3, 249328.Google Scholar
Kobayashi, T. 1937. Contribution to the study of the apical end of Ordovician nautiloids. Japanese Journal of Geology and Geography 14, 121.Google Scholar
Kröger, B. 2003. The size of siphuncle in cephalopod evolution. Senckenbergiana lethaea 83, 3952.CrossRefGoogle Scholar
Kröger, B. 2004. Large shell injuries in Middle Ordovician Orthocerida (Nautiloidea, Cephalopoda). GFF 126, 311–16.CrossRefGoogle Scholar
Kröger, B. 2005. Adaptive evolution in Paleozoic coiled Cephalopods. Paleobiology 31, 253–68.CrossRefGoogle Scholar
Kröger, B. & Landing, E. 2007. The earliest Ordovician cephalopods of eastern Laurentia – Ellesmerocerids of the Tribes Hill Formation, Eastern New York. Journal of Paleontology 81, 841–57.CrossRefGoogle Scholar
Kröger, B. & Mapes, R. 2007. On the origin of bactritoids (Cephalopoda). Paläontologische Zeitschrift 81 (3), 316–27.CrossRefGoogle Scholar
Kröger, B. & Mutvei, H. 2005. Nautiloids with multiple paired muscle scars from Lower–Middle Ordovician of Baltoscandia. Palaeontology 48, 781–91.CrossRefGoogle Scholar
Landing, E. 1988. Depositional tectonics and biostratigraphy of the western portion of the Taconic allochthon, eastern New York State. In The Canadian Paleontology and Biostratigraphy Seminar, Proceedings (ed. Landing, E.), pp. 96110. New York State Museum Bulletin 462, 157 pp.Google Scholar
Landing, E. 2002. Early Paleozoic sea levels and climates: new evidence from the east Laurentian shelf and slope. In Guidebook for Fieldtrips in New York and Vermont (eds J. McLelland & P. Karabinos), pp. C6–1–22. New England Intercollegiate Geological Conference 94th Annual Meeting and New York State Geological Association 74th Annual Meeting, Lake George, New York.Google Scholar
Landing, E., Franzi, D. A., Hagadorn, J. W., Westrop, S. R., Kröger, B. & Dawson, J. 2007. Cambrian of East Laurentia: field workshop in eastern New York and western Vermont. In Ediacaran–Ordovician of East Laurentia (ed. E. Landing), pp. 1634. New York State Museum Bulletin 510, 93 pp.Google Scholar
Landing, E. & Westrop, S. R. 2006. Lower Ordovician faunas, stratigraphy, and sea-level history of the middle Beekmantown Group, northeastern New York. Journal of Paleontology 80, 958–80.CrossRefGoogle Scholar
Landing, E., Westrop, S. R. & Knox, L. 1996. Conodonts, stratigraphy, and relative sea-level changes of the Tribes Hill Formation (Lower Ordovician), east-central New York. Journal of Paleontology 70, 652–76.CrossRefGoogle Scholar
Landing, E., Westrop, S. R. & Van Aller Hernick, L. 2003. Uppermost Cambrian–Lower Ordovician faunas and Laurentian platform sequence stratigraphy, eastern New York and Vermont. Journal of Paleontology 77, 7898.Google Scholar
Landing, E., Westrop, S. R. & Keppie, J. D. 2007. Terminal Cambrian and lowest Ordovician succession of Mexican West Gondwana – biotas and sequence stratigraphy of the Tiñu Formation. Geological Magazine 144, 909–36.CrossRefGoogle Scholar
Magurran, A. E. 2004. Measuring biological diversity. Oxford: Blackwell Science, 260 pp.Google Scholar
Manda, S. 2001. Some new or little known cephalopods from the Lower Devonian Pragian carbonate shelf (Prague Basin, Bohemia) with remarks on Lochkovian and Pragian cephalopod evolution. Journal of the Czech Geological Society 46, 269–86.Google Scholar
Murchison, R. I. 1859. On the succession of the older Rocks in the northernmost counties of Scotland; with some observations on the Orkney and Shetland Islands. The Quarterly Journal of the Geological Society of London 15, 353418.CrossRefGoogle Scholar
Repetski, J. E. 1982. Conodonts from the El Paso Group (Lower Ordovician) of westernmost Texas and southern New Mexico. New Mexico Bureau of Mines & Mineral Resources, Memoir 40, 159.Google Scholar
Repetski, J. E., Loch, J. D. & Ethington, R. E. 1998. Conodonts and biostratigraphy of the Lower Ordovician Roubidoux Formation in and near the Ozark National Scenic Riverways, southeastern Missouri. National Park Service, Technical Report D-1308, 109–15.Google Scholar
Rodgers, J. & Fisher, D. W. 1969. Paleozoic rocks in Washington County, New York, west of the Taconic klippe. In Guidebook for Fieldtrips in New York, Massachusetts, and Vermont (ed. J. M. Bird), pp. 6.1–6.12. New England Intercollegiate Geological Conference, 61st Annual Meeting. State University of New York at Albany.Google Scholar
Ross, R. J. Jr, Hintze, L. F., Ethington, R. L., Miller, J. F., Taylor, M. E., Repetski, J. E., Sprinkle, J. & Guensburg, T. E. 1997. Observed ranges of trilobites, conodonts, echinoderms, molluscs, and brachiopods in the Ibexian Series composite stratotype section and adjacent rocks, House–Confusion Range area west-central Utah. U.S. Geological Survey Professional Paper 1579-A, 150.Google Scholar
Ruedemann, R. 1905. The structure of some primitive cephalopods. New York State Museum Bulletin, 80 (10), 269341.Google Scholar
Schröder, H. 1891. Untersuchungen über silurische Cephalopoden. Paläontologische Abhandlungen, Neue Folge 1 (4), 148.Google Scholar
Swofford, D. L. 1993. PAUP: Phylogenetic Analysis Using Parsimony, Version 3.1.1. Illinois Natural History Survey, 257 pp.Google Scholar
Teichert, C. 1933. Der Bau der actinoceroiden Cephalopoden. Palaeontographica, A 77, 111230.Google Scholar
Teichert, C. 1964. Endoceratoidea. In Treatise on Invertebrate Paleontology, Part K, Mollusca 3 (ed. Moore, R. C.), pp. K16089. Boulder, Colorado, and Lawrence, Kansas: Geological Society of America and the University of Kansas Press.Google Scholar
Ulrich, E. O. & Foerste, A. F. 1935. New Genera of Ozarkian and Canadian cephalopods. Journal of the Scientific Laboratories of Denison University 30, 259–90.Google Scholar
Ulrich, E. O., Foerste, A. F., Miller, A. K. & Furnish, W. M. 1942. Ozarkian and Canadian cephalopods. Part I: Nautilicones. Geological Society of America Special Papers 37, 157 pp.Google Scholar
Ulrich, E. O., Foerste, A. F. & Miller, A. 1943. Ozarkian and Canadian cephalopods. Part II: Brevicones. Geological Society of America Special Papers 59, 240 pp.Google Scholar
Ulrich, E. O., Foerste, A. F., Miller, A. & Unklesbay, A. G. 1944. Ozarkian and Canadian cephalopods Part III: Longicones and summary. Geological Society of America Special Papers 58, 226 pp.Google Scholar
Unklesbay, A. G. 1961. Nautiloids from the Gorman and Honeycut of Central Texas. Journal of Paleontology 35, 373–9.Google Scholar
Unklesbay, A. G. & Young, R. S. 1956. Early Ordovician nautiloids from Virginia. Journal of Paleontology 30, 481–91.Google Scholar
Vanuxem, L. 1842. Geology of New York, Pt. 3, Comprising the survey of the Third Geological District. Albany: W. & A. White & J. Visscher, 306 pp.Google Scholar
Whitfield, R. P. 1886. Notice of geological investigations along the eastern shore of Lake Champlain, conducted by Prof. H. M. Seeley and Prest. Ezra Brainerd, of Middlebury College, with descriptions of the new fossils discovered. American Museum of Natural History Bulletin 1, 293345.Google Scholar
Whitfield, R. P. 1889. Descriptions of new species of Silurian fossils from the Calciferous sandrock of Lake Champlain and description of several new forms. American Museum of Natural History Bulletin 2, 4163.Google Scholar