Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-01T08:30:17.259Z Has data issue: false hasContentIssue false

The Oligocene–Miocene tectonic evolution of the northern Outer Carpathian fold-and-thrust belt: insights from compression-and-rotation analogue modelling experiments

Published online by Cambridge University Press:  24 May 2013

MARTA RAUCH*
Affiliation:
Institute of Geological Sciences, Polish Academy of Sciences INGPAN, Research Centre in Wroclaw, Podwale 75, PL 50449 Wrocław, Poland
*

Abstract

This paper presents the different analogue scenarios of the tectonic evolution of the northern Outer Carpathians (i.e. the Western and northern Eastern Outer Carpathians) which formed as an accretionary wedge in front of the East Alpine–Carpathian–Pannonian (ALCAPA) block during Oligocene–Miocene times. Currently, this fold-and-thrust belt forms an arc which is asymmetrically convex to the north and wider in its eastern part. Palaeomagnetic investigations have suggested that the rocks of the arc underwent counter-clockwise rotation along almost the whole arc, which is difficult to explain as an effect of simple indentation of the triangular indenter. In this case two branches of the arc should be rotated in the opposite directions. The structural evolution of the Western Outer Carpathians is characterized by superposition of two successive tectonic shortening events directed N–S and NE–SW. The results of the presented analogue modelling suggest that two scenarios of the geodynamic evolution of the studied belt could explain the occurrence of such differently oriented shortening events: (1) two phases of differently directed indentation (first to the N, then to the NE) and (2) indenter movement to the NE with simultaneous counter-clockwise rotation. However, the experiment in which the moving indenter is simultaneously rotated produces the most suitable model. The counter-clockwise rotation of the material is only possible in front of both sides of the convex indenter in this model. The results of the analogue modelling also prove that rotation of the ALCAPA block started after formation of the Magura nappe (the innermost nappe of the Western Outer Carpathians).

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aleksandrowski, P. 1985. Interference fold structure of the Western Flysch Carpathians in Poland. 13th Congress of the Carpatho-Balkan Geological Association, 5–10th September 1985, Cracow, Proceeding Reports Part 1, 159–62.Google Scholar
Aleksandrowski, P. 1989. Geologia strukturalna płaszczowiny magurskiej w rejonie Babiej Góry [Structural geology of the Magura Nappe in the Mt. Babia Góra region, western Outer Carpathians]. Studia Geologica Polonica 96, 1140 (in Polish with English summary).Google Scholar
An, L.-J. & Sammis, C. G. 1996. Development of strike-slip faults: shear experiments in granular materials and clay using a new technique. Journal of Structural Geology 18, 1061–77.Google Scholar
Bada, G. 1999. Cenozoic stress field evolution in the Pannonian Basin and surrounding orogens: Inferences from kinematic indicators and finite element modelling. Published Ph.D. thesis, Vrije University, Amsterdam, 204 pp.Google Scholar
Balla, Z. 1987. Tertiary paleomagnetic data for the Carpatho-Pannonian region in the light of Miocene rotation kinematics. Tectonophysics 139, 6798.Google Scholar
Behrmann, J. H., Stasiany, S., Milicka, J. & Pereszlenyi, M. 2000. Quantitative reconstruction of orogenic convergence in the Northeast Carpathians. Tectonophysics 319, 111–27.Google Scholar
Birkenmajer, K. 1986. Stages of structural evolution of the Pieniny Klippen Belt, Carpathians. Studia Geologica Polonica 80, 732.Google Scholar
Boutelier, D., Schrank, C. & Cruden, A. 2008. Power-law viscous materials for analogue experiments: new data on the rheology of highly-filled silicone polymers. Journal of Structural Geology 30, 341–53.Google Scholar
Broniatowska, M. 2008. Flysch massifs modelling and selection of parameters for slope stability calculations. Czasopismo Techniczne, 3–11. Wydawnictwo Politechniki Krakowskiej z. 1–Ś/2008, Biblioteka Cyfrowa PK (in Polish, with English summary).Google Scholar
Burchfil, B. C., 1980. Eastern European Alpine system and the Carpathian orocline as example of collision tectonics. Tectonophysics 63, 3161.Google Scholar
Butler, R. F., Richards, D. R., Sempere, T. & Marshall, L. G. 1995. Paleomagnetic determinations of vertical-axis tectonic rotations from Late Cretaceous and Paleocene strata of Bolivia. Geology 23, 799802.Google Scholar
Calassou, S., Larroque, C. & Malavieille, J. 1993. Transfer zones of deformation in thrust wedges: an experimental study. Tectonophysics 221, 325–44.Google Scholar
Chapple, W. M. 1978. Mechanics of thin-skinned fold-and-thrust belts. Geological Society of America Bulletin 89, 1189–98.Google Scholar
Chen, C., Lu, H., Ji, D., Cai, D. & Wu, S. 1999. Closing history of the southern Tianshan oceanic basin, western China: an oblique collisional orogeny. Tectonophysics 302, 2340.CrossRefGoogle Scholar
Colletta, B., Letouzey, J., Pinedo, R., Ballard, J. F. & Balé, P. 1991. Computerized X-ray tomography analysis of sandbox models: Examples of thin-skinned thrust systems. Geology 19, 1063–7.Google Scholar
Cotton, J. T. & Koyi, H. A. 2000. Modeling of thrust fronts above ductile and frictional detachments: application to structures in the Salt Range and Potwar Plateau, Pakistan. Geological Society of America Bulletin 112, 351–63.Google Scholar
Csontos, L. 1995. Tertiary tectonic evolution of the Intra-Carpathian area: a review. Acta Vulcanologica 7, 113.Google Scholar
Csontos, L., Nagymarosy, A., Horváth, F. & Kováč, M. 1992. Tertiary evolution of the Intra-Carpathian area: a model. Tectonophysics 208, 221–41.Google Scholar
Csontos, L. & Vörös, A. 2004. Mesozoic plate tectonic reconstruction of the Carpathian region. Palaeogeography, Palaeoclimatology, Palaeoecology 210, 156.Google Scholar
Davis, D., Suppe, J. & Dahlen, F. A. 1983. Mechanics of fold and thrust belts and accretionary wedges. Journal of Geophysical Research 88, 1153–72.Google Scholar
Davy, P. & Cobbold, P. R. 1988. Indentation tectonics in nature and experiment. 1. Experiments scaled for gravity. Bulletin of the Geological Institutions of the University of Uppsala. New Series 14, 129–41.Google Scholar
Decker, K., Nescieruk, P., Reiter, F., Rubinkiewicz, J., Ryłko, W. & Tokarski, A. K. 1997. Heteroaxial shortening, strike-slip faulting and displacement transfer in the Polish Carpathians. Przegląd Geologiczny 45, 1070–1.Google Scholar
Decker, K., Tokarski, A. K., Jankowski, L., Kopciowski, R., Nescieruk, P., Rauch, M., Reiter, F. & Świerczewska, A. 1999. Structural development of Polish segment of the Outer Carpathians (Eastern part). Introduction to Stops: 716. 5th Carpathian Tectonic Workshop, Poprad-Szymbark 59th June 1999, 26–9.Google Scholar
Dewey, J. F., Pitman, W. C. (III), Ryan, W. B. F. & Bonnin, J. 1973. Plate tectonics and the evolution of the Alpine system. Geological Society of America Bulletin 84, 3137–80.Google Scholar
Dixon, J. M. & Liu, S. 1992. Centrifuge modelling of the propagation of thrust faults. In Thrust Tectonics (ed. McClay, K. R.), pp. 5369. London: Chapman and Hall.Google Scholar
Doglioni, C. 1992. Main differences between thrust belts. Terra Nova 4, 152–64.Google Scholar
Eisenstadt, G. & Sims, D. 2005. Evaluating sand and clay models: do rheological differences matter? Journal of Structural Geology 27, 1399–412.Google Scholar
Elliott, D. 1976. The energy balance and deformation mechanisms of thrust sheets. Philosophical Transactions of the Royal Society of London A 283, 289312.Google Scholar
Ellouze, N. & Roca, E. 1994. Palinspastic reconstructions of the Carpathians and adjacent areas since the Cretaceous: a quantitative approach. In Peri-Tethyan Platforms (ed. Roure, F.), pp. 5178. Paris: Editions Technip.Google Scholar
Fischer, M. P. & Woodward, N. B. 1992. The geometric evolution of foreland thrust systems. In Thrust Tectonics (ed. McClay, K. R.), pp. 181–9. London: Chapman and Hall.Google Scholar
Fodor, L. 1995. From transpression to transtension Oligocene–Miocene tectonic evolution of the Vienna Basin and the East Alpine–Western Carpathian junction. Tectonophysics 242, 151–82.Google Scholar
Fodor, L., Csontos, L., Bada, G., Györfi, I. & Benkovics, L. 1999. Tertiary tectonic evolution of the Pannonian basin system and neighbouring orogens: a new synthesis of palaeostress data. In The Mediterranean Basins: Tertiary Extension within the Alpine Orogen (eds. Durand, B., Jolivet, L., Horváth, F., & Séranne, M.), pp. 295334. London: Geological Society, Special Publications 156.Google Scholar
Fodor, L., Magyari, Á., Kázmér, M. & Fogarasi, A. 1992. Gravity flow dominated sedimentation on the Buda paleoslope (Hungary): record of Late Eocene continental escape of the Bakony unit. Geologische Rundschau 81, 695716.Google Scholar
Frisch, W., Kuhlemann, J., Dunkl, I. & Brügel, A. 1998. Palinspastic reconstruction and topographic evolution of the Eastern Alps during late Tertiary tectonic extrusion. Tectonophysics 297, 115.Google Scholar
Golonka, J., Oszczypko, N. & Ślączka, A. 2000. Late Carboniferous-Neogene geodynamic evolution and paleogeography of the circum-Carpathian region and adjacent areas. Annales Societatis Geologorum Poloniae 70, 107–36.Google Scholar
Grabowski, J., Krzemiński, L., Nescieruk, P. & Starnawska, E. 2006. Palaeomagnetism of the teschenitic rocks (Lower Cretaceous) in the Outer Western Carpathians of Poland: constraints for tectonic rotations in the Silesian unit. Geophysical Journal International 166, 1077–94.Google Scholar
Head, K. H. 1992. Manual of Soil Laboratory Testing. Volume 1: Soil Classification and Compaction Tests. 2nd ed. Pentech Press London. pp. 761–5.Google Scholar
Hubbert, M. K. 1937. Theory of scale models as applied to the study of geological structures. Geological Society of America Bulletin 48, 1459–520.Google Scholar
Hubbert, M. K. 1951. Mechanical basis for certain familiar geologic structures. Geological Society of America Bulletin 62, 355–72.Google Scholar
Jankowski, L. 1997. Warstwy z Gorlic - najmłodsze utwory południowej części jednostki śląskiej [Beds from Gorlice – the youngest strata of the southern part of the Silesian Unit]. Przegląd Geologiczny 45, 305–8 (in Polish).Google Scholar
Jankowski, L. 2007. Kompleksy chaotyczne w rejonie gorlickim (Polskie Karpaty Zewnętrzne) [Chaotic complexes in the Gorlice region (Polish Outer Carpathians)]. Biuletyn Państwowego Instytutu Geologicznego 426, 2752 (in Polish, with English summary).Google Scholar
Karnkowski, P. 1974. Zapadlisko przedkarpackie – część wschodnia (na wschód od Krakowa) [Carpathian Foredeep – the eastern part (eastward from Cracow)]. In Budowa Geologiczna Polski, Tektonika, Niż Polski. (ed. Pożaryski, W.), pp. 402–16. Wydawnictwo Geologiczne (in Polish).Google Scholar
Koráb, T., Krs, M., Krsová, M. & Pagác, P. 1981. Paleomagnetic investigations of Albian(?)–Paleocene to Lower Oligocene sediments from the Dukla Unit, East Slovakian Flysch, Czechoslovakia. Západné Karpaty, Geológia 7, 127–49.Google Scholar
Kotlarczyk, J. 1985. An outline of the stratigraphy of Marginal Tectonic Units of the Carpathian orogen in the Kraków Przemyśl area. In Geotraverse Kraków-Baranów-Rzeszów-Przemyśl-Komańcza-Dukla. XIII Congress Carpatho-Balkan Geological Association, Guide to Excursion 4 (ed. Kotlarczyk, J.), pp. 2132, Wydawnictwo Geologiczne, Warszawa.Google Scholar
Kováč, M., Král, J., Márton, E., Plašienka, D. & Uher, P. 1994. Alpine uplift history of the Central Western Carpathians: geochronological, paleomagnetic, sedimentary and structural data. Geologica Carpathica 45, 8396.Google Scholar
Kováč, M., Nagymarosy, A., Oszczypko, N., Ślączka, A., Csontos, L., Marunteanu, M., Matenco, L. & Márton, E. 1998. Palinspastic reconstruction of the Carpathian-Pannonian region during the Miocene. In Geodynamic Development of the Western Carpathians (ed. Rakuš, M.), pp. 189217. Slovak Geological Survey, Bratislava.Google Scholar
Krs, M., Chvojka, R. & Potfaj, M. 1993. Paleomagnetic investigations in the Biele Karpaty Mts unit, flysch belt of the Western Carpathians. Geologica Carpathica 45, 3543.Google Scholar
Krs, M., Krsová, M., Chvojka, R. & Potfaj, M. 1991. Paleomagnetic investigations of the flysch belt in the Orava region, Magura unit, Czechoslovak Western Carpathians. Geologické Práce 92, 135–51.Google Scholar
Krs, M., Krsova, M. & Pruner, P. 1996. Paleomagnetism and paleogeography of the Western Carpathians from the Permian to the Neogene. In Paleomagnetism and Tectonics of the Mediterranean region (eds Morris, A. & Tarling, D. H.) pp. 175–84. Geological Society of London, Special Publication no. 105.Google Scholar
Krs, M., Muska, P. & Pagáč, P. 1982. Review of paleomagnetic investigations in the West Carpathians of Czechoslovakia. Geologické Práce 78, 3958.Google Scholar
Krzywiec, P. 2001. Contrasting tectonic and sedimentary history of the central and eastern parts of the Polish Carpathian foredeep basin - results of seismic data interpretation. Marine and Petroleum Geology 18, 1338.Google Scholar
Książkiewicz, M. 1977. The tectonics of the Carpathians. In: Geology of Poland. Volume 4: Tectonics, pp. 476669. Geological Institute, Warszawa.Google Scholar
Lexa, O., Schulmann, K. & Ježek, J. 2003. Cretaceous collision and indentation in the West Carpathians: view based on structural analysis and numerical modeling. Tectonics 22, 1066, doi:10.1029/2002TC001472 Google Scholar
Lexa, V., Elecko, M., Mello, J., Polak, M., Potfaj, M. & Vozar, J. (eds) 2000. Geological Map of Western Carpathians and Adjacent Areas 1:500 000. Geological Survey of Slovenia, Bratislava.Google Scholar
Lickorish, W. H., Ford, M., Bürgisser, J., & Cobbold, P. 2002. Arcuate thrust systems produced by sand-box modelling: a comparison to the external arc of the Western Alps. Geological Society of America Bulletin 114, 1089–107.Google Scholar
Liu, H., McClay, K. R. & Powell, D. 1992. Physical models of thrust wedges. In Thrust Tectonics (ed. McClay, K. R.), pp. 7181. London: Chapman and Hall.Google Scholar
Łukaszewicz, P., 2007. Deformational properties of flysch sandstones under conventional triaxial compressions. Archives of Mining Sciences, 52, 371–85.Google Scholar
Macedo, J. & Marshak, S. 1999. Controls on the geometry of fold-thrust belt salients. Geological Society of America Bulletin 111, 1808–22.Google Scholar
Marshak, S. 2004. Salients, recesses, arcs, oroclines, and syntaxes; a review of ideas concerning the formation of map-view curves in fold-thrust belts. In Thrust Tectonics and Hydrocarbon Systems (ed. McClay, K. R.), pp. 131–56. American Association of Petroleum Geologists, Memoir 82.Google Scholar
Marshak, S. & Wilkerson, M.S. 1992. Effect of overburden thickness on thrust belt geometry and development. Tectonics 11, 560–6.Google Scholar
Márton, E. & Fodor, L. 2003. Tertiary paleomagnetic results and structural analysis from the Transdanubian Range (Hungary): rotational disintegration of the Alcapa unit, Tectonophysics 363, 201–24.Google Scholar
Márton, E., Kuhlemann, J., Frisch, W. & Dunkl, I. 2000. Miocene rotations in the Eastern Alps—Paleomagnetic results from intramontane basin sediments. Tectonophysics 323, 163–82.Google Scholar
Márton, E. & Márton, P. 1996. Large scale rotation in North Hungary during the Neogene as indicated by paleomagnetic data. In Paleomagnetism and Tectonics of the Mediterranean Region (eds Morris, A. & Tarling, D. H.), pp. 153–73. Geological Society of London, Special Publication no. 105.Google Scholar
Márton, E., Mastella, L. & Tokarski, A. K. 1999. Large counterclockwise rotation of the Inner West Carpathian Paleogene Flysch—evidence from paleomagnetic investigation of the Podhale Flysch (Poland). Physics and Chemistry of the Earth (A) 24, 645–9.Google Scholar
Márton, E., Rauch-Włodarska, M., Krejčí, O., Tokarski, A. K. & Bubík, M. 2009. An integrated palaeomagnetic and AMS study of the Tertiary flysch from the OuterWestern Carpathians. Geophysical Journal International 177, 925–40.Google Scholar
Márton, E., Tischler, M., Csontos, L., Fügenschuh, B. & Schmid, S. M. 2007. The contact zone between the ALCAPA and Tisza-Dacia megatectonic units of Northern Romania in the light of new paleomagnetic data. Swiss Journal of Geosciences 100, 109–24.Google Scholar
Márton, E., Tokarski, A. K., Krejčí, O., Rauch, M., Olszewska, B., Tomanová, P. & Wójcik, A. 2011. ‘Non-European’ palaeomagnetic directions from the Carpathian Foredeep at the southern margin of the European plate. Terra Nova 23, 134–44.Google Scholar
Mastella, L. & Konon, A. 2002. Jointing in the Silesian Nappe (Outer Carpathians, Poland—Palaeostress reconstruction). Geologica Carpathica 53, 315–25.Google Scholar
Matenco, L. & Bertotti, G. 2000. Tertiary tectonic evolution of the external East Carpathians (Romania). Tectonophysics 316, 255–86.Google Scholar
Mechelen, J. L. M. 2004. Strength of moist sand controlled by surface tension for tectonic analogue modeling. Tectonophysics 384, 275–84.Google Scholar
Morley, C. K. 1996. Models for relative motion of crustal blocks within the Carpathian region, based on restorations of the outer Carpathian thrust sheets. Tectonics 15, 885904.Google Scholar
Mulugeta, G. 1988. Modelling the geometry of Coulomb thrust wedges. Journal of Structural Geology 10, 847–59.Google Scholar
Mulugeta, G. & Koyi, H. 1987. Three-dimensional geometry and kinematics of experimental piggyback thrusting. Geology 15, 1052–6.Google Scholar
Mulugeta, G. & Koyi, H. 1992. Episodic accretion and strain partitioning in a model sand wedge. Tectonophysics 202, 319–33.Google Scholar
Nemčok, M., Coward, M. P., Secombe, W. J. & Klecker, R. A. 1999. Structure of the West Carpathian accretionary wedge: Insights from cross section construction and sandbox validation. Physics and Chemistry of the Earth (A) 24, 659–65.Google Scholar
Nemčok, M., Dilov, T., Wojtaszek, M., Ludhová, L., Klecker, R. A., Sercombe, W. J. & Coward, M. P. 2007. Dynamics of the Polish and Eastern Slovakian parts of the Carpathian accretionary wedge: insights from palaeostress analyses. In Deformation of the Continental Crust: The Legacy of Mike Coward (eds Ries, A. C., Butler, R. W. H. & Graham, R. H.), pp. 271302. Geological Society of London, Special Publication no. 272.Google Scholar
Nemčok, M., Houghton, J. J. & Coward, M. P. 1998 a. Strain partitioning along the western margin of the Carpathians. Tectonophysics 292, 119–43.Google Scholar
Nemčok, M., Krzywiec, P., Wojtaszek, M., Ludhová, L., Klecker, R. A., Sercombe, W. J. & Coward, M. P. 2006. Tertiary development of the Polish and eastern Slovak part of the Carpathian accretionary wedge: insights from balanced cross-sections. Geologica Carpathica 57, 355–70.Google Scholar
Nemčok, M. & Nemčok, J. 1994. Late Cretaceous deformation of the Pieniny Klippen Belt, Western Carpathians. Tectonophysics 239, 81109.Google Scholar
Nemčok, M., Pospišil, L., Lexa, J. & Donelick, R. A. 1998 b. Tertiary subduction and slab break-off model of the Carpathian-Pannonian region. Tectonophysics 295, 307–40.Google Scholar
Neugebauer, J., Greiner, B., & Appel, E. 2001. Kinematics of the Alpine-West Carpathian orogen and paleogeographic implications. Journal of the Geological Society, London 158, 97110.Google Scholar
O'Brien, P. J. 2001. Subduction followed by collision: Alpine and Himalayan examples. Physics of the Earth and Planetary Interiors 127, 277–91.Google Scholar
Olszewska, B. 1999. Biostratygrafia neogenu zapadliska przedkarpackiego w świetle nowych danych mikropaleontologicznych [Neogene biostratigraphy of the Carpathian Foredeep in light of the new micropaleontological data]. Prace Państwowego Instytutu Geologicznego CLXVIII, 928 (in Polish).Google Scholar
Oszczypko, N. 1998. The Western Carpathian Foredeep - development of the foreland basin in front of the accretionary wedge and its burial history (Poland). Geologica Carpathica 49, 415–31.Google Scholar
Oszczypko, N. 2004. The structural position and tectonosedimentary evolution of the Polish Outer Carpathians. Przegląd Geologiczny 52, 780–91.Google Scholar
Oszczypko, N. 2006. Late Jurassic–Miocene evolution of the Outer Carpathian fold-and-thrust belt and its foredeep basin (Western Carpathians, Poland). Geological Quarterly 50, 169–94.Google Scholar
Pescatore, T. & Ślączka, A. 1984. Evolution models of two flysch basins: the Northern Carpathians and Southern Appennines. Tectonophysics 106, 4970.Google Scholar
Pettijohn, F. J. 1975. Sedimentary Rocks. Third edition. New York: Harper and Row Publishers Inc. 628 pp.Google Scholar
Picha, F., Stráník, Z. & Krejčí, O. 2005. Geology and hydrocarbon resources of the Outer Western Carpathians and their foreland, Czech Republic. In The Carpathians and their Foreland: Geology and Hydrocarbon Resources (eds Golonka, J. & Picha, F.), pp. 49175. American Association of Petroleum Geologists, Memoir 84.Google Scholar
Plašienka, D. 1991. Mesozoic tectonic evolution of the epi-Variscan continental crust of the Western Carpathians: A tentative model. Mineralia Slovaca 23, 447–57.Google Scholar
Plašienka, D. P., Grecula, M., Putiš, M., Kováč, . & Hovorka, D. 1997. Evolution and structure of the Western Carpathians: an overview. In Geological Evolution of the Western Carpathians (eds Grecula, P., Hovorka, D. & Putiš, M.), pp. 124, Mineralia Slovaca, Monograph, Bratislava.Google Scholar
Połtowicz, S. 1991. Miocen strefy karpackiej między Wieliczką a Dębicą [Miocene of the Carpathian zone between Wieliczka and Dębica]. Zeszyty Naukowe AGH Geologia 17, 1957 (in Polish, with English summary).Google Scholar
Poprawa, P., Malata, T. & Oszczypko, N. 2002. Ewolucja tektoniczna basenów sedymentacyjnych polskiej części Karpat zewnętrznych w świetle analizy subsydencji [Tectonic evolution of sedimentary basins of the Polish part of the Outer Carpathians in the light of subsidence analysis] Przegląd Geologiczny 11, 1092–108 (in Polish).Google Scholar
Powders, M. C. 1953. A new roundness scale for sedimentary particles. Journal of Sedimentary Petrology 23, 117–9.Google Scholar
Rauch, M. 2001. Evolution of the Polish segment of the Western Outer Carpathians forced by the Tertiary convergence of the ALCAPA. The results of laboratory modelling. In: Abstracts of the Carpathian Petroleum Conference ‘Application of modern exploration methods in a complex petroleum system’ Wysowa, June 2001 (ed. Dziadzio, P.), pp. 8287.Google Scholar
Ratschbacher, L., Frisch, W., Linzer, H. G. & Merle, O. 1991 a. Lateral extrusion in the Eastern Alps: Part 2. Structural analysis. Tectonics 10, 257–71.Google Scholar
Ratschbacher, L., Frisch, W., Linzer, H. G., Sperner, B., Meschede, M., Decker, K., Nemčok, M., Nemčok, J. & Grygar, R. 1993. The Pieniny Klippen Belt in the Western Carpathians of northeastern Slovakia, structural evidence for transpression. Tectonophysics 226, 471–83.Google Scholar
Ratschbacher, L., Merle, O., Davy, P. & Cobbold, P. 1991 b. Lateral extrusion in the Eastern Alps: Part 1. Boundary conditions and experiments scaled for gravity. Tectonics 10, 245–56.Google Scholar
Reiter, K., Kukowski, N. & Ratschbacher, L. 2011. The interaction of two indenters in analogue experiments and implications for curved fold-and-thrust belts. Earth and Planetary Science Letters 302, 132–46.Google Scholar
Roca, E., Bessereau, G., Jawor, E., Kotarba, M. & Roure, F. 1995. Pre-Neogene evolution of the Western Carpathians: constraints from the Bochnia-Tatra Mountains section (Polish Western Carpathians). Tectonics 14, 855–73.Google Scholar
Royden, L. H. 1993. Evolution of retreating subduction boundaries formed during continental collision. Tectonics 12, 629–38.Google Scholar
Royden, L. H. & Burchfield, B. C. 1989. Are systematic variations in thrust belt style related to plate boundary processes? (The Western Alps versus the Carpathians). Tectonics 8, 5161.Google Scholar
Rubinkiewicz, J. 2000. Development of fault pattern in the Silesian nappe: Eastern Outer Carpathians, Poland. Geological Quarterly 44, 391403.Google Scholar
Schellart, W. P. 2000. Shear test results for cohesion and friction coefficients for different granular materials: scaling implications for their usage in analogue modelling. Tectonophysics 324, 116.Google Scholar
Schmid, S. M., Aebli, H. R., Heller, F. & Zingg, A. 1989. The role of the Periadriatic line in the tectonic evolution of the Alps. In Alpine Tectonics (ed. Coward, M. P.), pp. 153171. Geological Society of London, Special Publication no. 45.Google Scholar
Schmid, S. M., Bernoulli, D., Fügenschuh, B., Matenco, L., Schefer, S., Schuster, R., Tischler, M. & Ustaszewski, K. 2008. The Alpine-Carpathian-Dinaridic orogenic system: correlation and evolution of tectonic units. Swiss Journal of Geosciences 101, 139–83.Google Scholar
Sieniawska, I., Aleksandrowski, P., Rauch, M. A. & Koyi, H. 2010. Control of synorogenic sedimentation on back and out-of-sequence thrusting: insights from analog modeling of an orogenic front (Outer Carpathians, southern Poland). Tectonics 29, TC6012.Google Scholar
Ślączka, A., Krugłov, S., Golonka, J., Oszczypko, N. & Popadyuk, I. 2005. Geology and hydrocarbon resources of the Outer Carpathians, Poland, Slovakia, and Ukraine: general geology. In The Carpathians and their Foreland: Geology and Hydrocarbon Resources (eds Golonka, J. & Picha, F. J.), p. 221–58. American Association of Petroleum Geologists, Memoir 84.Google Scholar
Sperner, B., Ratschbacher, L. & Nemčok, M. 2002. Interplay between subduction rollback and lateral extrusion, tectonics of the Western Carpathians. Tectonics 21, 1051–75.Google Scholar
Stefaniuk, M., Ostrowski, C., Targosz, P., Wojdyła, M. 2009. Some problems of magnetotelluric and gravity structural investigations in the Polish Eastern Carpathians. Geologia 4, 746, Wydawnictwo AGH, Kraków (in Polish, with English summary).Google Scholar
Świerczewska, A. & Tokarski, A. K. 1998. Deformation bands and the history of folding in the Magura nappe, Western Outer Carpathians (Poland). Tectonophysics 297, 7390.Google Scholar
Tapponnier, P., Peltzer, G., Le Dain, A. Y. & Armijo, R. 1982. Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine. Geology 10, 611–6.Google Scholar
Tokarski, A. K., Świerczewska, A., Zuchiewicz, W., Márton, E., Hurai, V., Anczkiewicz, A., Michalik, M., Szeliga, W. & Rauch-Włodarska, M. 2006. Structural development of the Magura Nappe (Outer Carpathians): from subduction to collapse. Geolines 20, 145–64.Google Scholar
Ustaszewski, K., Schmid, S. M., Fügenschuh, B., Tischler, M., Kissling, E. & Spakman, W. 2008. A map-view restoration of the Alpine-Carpathian-Dinaridic system for the Early Miocene. Swiss Journal of Geosciences 101, S273S294 Supplement 1.Google Scholar
Vialon, P., Rochette, P. & Menard, G. 1989. Indentation and rotation in the western Alpine arc. In Alpine Tectonics (eds Coward, M. P., Dietrich, D. & Park, R. G.), pp. 329–38. Geological Society of London, Special Publication no. 45.Google Scholar
Wójcik, A., Szydło, A., Marciniec, P., & Nescieruk, P. 1999. The folded Miocene of the Andrychów region. Biuletyn Państwowego Instytutu Geologicznego 387, 191–5.Google Scholar
Yonkee, A. & Weil, A. B. 2010. Reconstructing the kinematic evolution of curved mountain belts: Internal strain patterns in the Wyoming salient, Sevier thrust belt, U.S.A. Geological Society of America Bulletin 122, 2449.Google Scholar
Zuchiewicz, W., Tokarski, A. K., Jarosiński, M. & Márton, E. 2002. Late Miocene to present day structural development of the Polish segment of the Outer Carpathians. Stephan Mueller Special Publication 3, 185202.Google Scholar
Zweigel, P. 1998. Arcuate accretionary wedge formation at convex plate margin corners: results of sandbox analogue experiments. Journal of Structural Geology 20, 1597–609.Google Scholar
Żytko, K., Gucik, S., Ryłko, W., Oszczypko, N., Zając, R., Garlicka, I., Nemčok, J., Eliáš, M., Menčík, E., Dvořák, J., Stráník, Z., Rakus, M. & Matejovská, O. 1989. Geological map of the Western Outer Carpathians and their foreland without Quaternary formations. In Geological Atlas of the Western Outer Carpathians and their Foreland. (eds Poprawa, D. & Nemčok, J.). Wydawnictwo Państwowego Instytutu Geologicznego, Warszawa.Google Scholar