Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-22T16:09:20.234Z Has data issue: false hasContentIssue false

New palaeomagnetic, petrographic and 40Ar/39Ar data to test palaeogeographic reconstructions of Caledonide Svalbard

Published online by Cambridge University Press:  14 November 2011

KRZYSZTOF MICHALSKI*
Affiliation:
Institute of Geophysics, Polish Academy of Sciences, ul. Ksiecia Janusza 64, 01-452 Warsaw, Poland
MAREK LEWANDOWSKI
Affiliation:
Institute of Geological Sciences, Polish Academy of Sciences, ul. Twarda 51/55, 00-818 Warsaw, Poland
GEOFF MANBY
Affiliation:
Natural History Museum, Mineralogy Department, Cromwell Road, London, SW7 5BD, UK
*
Author for correspondence: [email protected]

Abstract

New palaeomagnetic and petrographic data are presented from Cambrian rocks of SW Svalbard to test, for the first time, Palaeozoic reconstructions of the major terranes of Svalbard. In the course of thermal demagnetization three ChRM (characteristic remanent magnetization) components were identified, which were labelled HORNL, HORNM and HORNH, respectively, on the basis of their different unblocking temperatures. The HORNM magnetization is related to the Late Ordovician–Silurian formation of the synmetamorphic S1 foliation. The HORNM palaeopole (Φ = −18.5°, Λ = 359°, Dp/Dm = 5.8°/11.4°, Plat = 6°N) matches exactly the Silurian sectors of the Baltica–Laurentia apparent polar wander paths after the closure of Iapetus (455–415 Ma). The 450 Ma 40Ar–39Ar age determination from mica ages obtained from the broad zone of mylonites along the Billefjorden Fault Zone which separates the Central and Eastern terranes, also suggests that the two terranes were eventually amalgamated by 450 Ma. The HORNMVGP also lies very near the palaeopole derived from the Middle Proterozoic rocks of the Eastern Terrane (Ny Friesland), metamorphosed during Caledonian time, suggesting its close proximity to the study area (Central Terrane). The present study has shown that at least two of the major terranes of Svalbard, as defined by previous authors, occupied similar geographical locations by Silurian time, and the previously proposed large-scale Late Devonian left lateral displacements are not supported.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barrère, C., Ebbing, J. & Gernigon, L. 2009. Offshore prolongation of Caledonian structures and basement characterization in the western Barents Sea from geophysical modeling. Tectonophysics 470, 7188.CrossRefGoogle Scholar
Birkenmajer, K. 1964. Devonian, Carboniferous and Permian formations of Hornsund, Vestspitsbergen. Studia Polonica 11, 47124.Google Scholar
Birkenmajer, K. 1975. Caledonides of Svalbard and plate tectonics. Bulletin of the Geological Society of Denmark 24, 119.Google Scholar
Birkenmajer, K. & Orłowski, S. 1977. Olenellid fauna from the base of Lower Cambrian sequence in south Spitsbergen. Norsk Polarinstitutt Årbok 1976, 167–85.Google Scholar
Birkenmajer, K. 1978. Cambrian succession in south Spitsbergen. Studia Geologica Polonica 59, 746.Google Scholar
Birkenmajer, K. 1990. Geology of the Hornsund area, Spitsbergen. Explanations to the map 1:75000 scale. Katowice: University of Silesia.Google Scholar
Breivik, A. J., Mjelde, R., Grogan, P., Shimamura, H., Murai, Y., Nishimura, Y. & Kuwano, A. 2002. A possible Caledonide arm through the Barents Sea imaged by OBS data. Tectonophysics 355, 6797.CrossRefGoogle Scholar
Breivik, A. J., Mjelde, R., Grogan, P., Shimamura, H., Murai, Y. & Nishimura, Y. 2003. Crustal structure and transform margin development south of Svalbard based on ocean bottom seismometer data. Tectonophysics 369, 3770.CrossRefGoogle Scholar
Breivik, A. J., Mjelde, R., Grogan, P., Shimamura, H., Murai, Y. & Nishimura, Y. 2005. Caledonide development offshore–onshore Svalbard based on ocean bottom seismometer, conventional seismic, and potential field data. Tectonophysics 401, 79117.CrossRefGoogle Scholar
Bullard, E. C., Everett, J. E. & Smith, A. G. 1965. The fit of the continents around the Atlantic. Philosophical Transactions of the Royal Society of London, Ser. A, 258, 4151.Google Scholar
Butler, R. F. 1992. Paleomagnetism: Magnetic domains to geological terranes. Boston: Blackwell Scientific Publications, 319 pp.Google Scholar
Claesson, K. C. 1979. Early Palaeozoic geomagnetism of Gotland. Geologiska Foreningens I Stockholm Forhandlingar 101, 149–55.CrossRefGoogle Scholar
Cocks, L. R. M. & Torsvik, T. H. 2005. Baltica from late Precambrian to mid-Palaeozoic times: the gain and loss of a terrane's identity. Earth Science Reviews 72, 3966.CrossRefGoogle Scholar
Cox, A. & Doell, R. R. 1960. Review of paleomagnetism. Geological Society of America Bulletin 71 (6), 645768.CrossRefGoogle Scholar
Deutsch, E. R. & Prasad, J. N. 1987. Ordovician palaeomagnetic results from the St George and Table Head carbonates of western Newfoundland. Canadian Journal of Earth Sciences 24, 1785–96.CrossRefGoogle Scholar
Douglass, D. N. 1988. Palaeomagnetics of Ringerike Old Red Sandstone and related rocks, southern Norway: implications for pre-Carboniferous separation of Baltica and British Terranes. Tectonophysics 148, 1127.CrossRefGoogle Scholar
Dunlop, D. J. & Özdemir, Ö. 1997. Rock Magnetism Fundamentals and Frontiers. New York, London and Cambridge: Cambridge University Press, 596 pp.CrossRefGoogle Scholar
Eiken, O. & Austegard, A. 1987. The Tertiary orogenic belt of Western Spitsbergen: seismic expressions of the offshore sedimentary basins. Norges Geologisk Tidsskrift 67, 383–94.Google Scholar
Enkin, R. J. 1994. A Computer Program Package for Analysis and Presentation of Palaeomagnetic Data. Sidney, BC: Pacific Geoscience Centre, Geological Survey of Canada.Google Scholar
Enkin, R. J. & Watson, G. S. 1996. Statistical analysis of palaeomagnetic inclination data. Geological Journal International 126, 495504.Google Scholar
Fisher, R. A. 1953. Dispersion on a sphere. Proceedings of the Royal Society of London series A 217, 295305.CrossRefGoogle Scholar
Gee, D. G. & Page, L. 1994. Caledonian terrane assembly on Svalbard: new evidence from Ar/Ar dating in New Friesland. American Journal of Science 294, 1166–86.CrossRefGoogle Scholar
Gee, D. G. & Tebenkov, A. M. 2004. Svalbard: a fragment of the Laurentian margin. In The Neoproterozoic Timanide Orogen of Eastern Baltica (eds Gee, D. G. & Pease, V.), pp. 191206. Geological Society of London, Memoir 30.Google Scholar
Graham, J. W. 1949. The stability and significance of magnetism in sedimentary rocks. Journal of Geophysical Research 54, 131–67.CrossRefGoogle Scholar
Hall, S. A. & Evans, I. 1988. Palaeomagnetic study of the Ordovician Table Head Group, Port au Port Peninsula, Newfoundland. Canadian Journal of Earth Sciences 25, 1407–19.CrossRefGoogle Scholar
Halvorsen, E. 1989. A palaeomagnetic pole position of Late Jurassic/Early Cretaceous dolerites from Hinlopenstretet, Svalbard, and its tectonic implications. Earth and Planetary Letters 94, 398408.CrossRefGoogle Scholar
Hambrey, M. J. 1982. Late Precambrian diamictites of northeastern Svalbard. Geological Magazine 119, 527–51.CrossRefGoogle Scholar
Harland, W. B. 1997. The Geology of Svalbard. Geological Society of London, Memoir 17, 521 pp.Google Scholar
Harland, W. B. & Gayer, R. A. 1972. The Arctic Caledonides and earlier oceans. Geological Magazine 109, 289314.CrossRefGoogle Scholar
Harland, W. B. & Wright, N. J. R. 1979. Alternative hypothesis for the pre-Carboniferous evolution of Svalbard. Norsk Polarinstitutt Skrifter 167, 89117.Google Scholar
Hirajima, T., Banno, S., Hiroy, Y. & Ohta, Y. 1988. Phase petrology of eclogites and related rocks from Motalafjella high pressure metamorphic complex in Spitsbergen (Arctic Ocean) and its significance. Lithos 22, 7597.CrossRefGoogle Scholar
Hodych, J. P. 1989. Limestones of western Newfoundland that magnetized before Devonian folding but after Middle Ordovician lithification. Geophysical Research Letters 16, 9396.CrossRefGoogle Scholar
Horsfield, W. T. 1972. Glaucophane schists of Caledonian age from Spitsbergen. Geological Magazine 109, 2936.CrossRefGoogle Scholar
Jelinek, V. 1977. The Statistical Theory of Measuring Anisotropy of Magnetic Susceptibility of Rocks and its Applications. Brno: Geofizyka, 88 pp.Google Scholar
Kądziołko-Hofmokl, M. & Kruczyk, J. 1976. Complete and partial self-reversal of natural remanent magnetization of basaltic rocks from Lower Silesia, Poland. Pure and Applied Geophysics 110, 2031–40.Google Scholar
Kirschvink, J. 1980. The least square line and plane and analysis of paleomagnetic data. Geophysical Journal of the Royal Astronomical Society 62, 699718.CrossRefGoogle Scholar
Lewandowski, M. & Abrahamsen, N. 2003. Paleomagnetic results from the Cambrian and Ordovician sediments of Bornholm (Denmark) and Southern Sweden and paleogeographical implications for Baltica. Journal of Geophysical Research 108 (B11), 2516, doi:10.1029/2002JB002281, 17 pp.CrossRefGoogle Scholar
Lewandowski, M., Werner, T. & Nowożyński, K. 1997. PDA – a package of FORTRAN programs for palaeomagnetic data analysis, manuscript. Warsaw: Institute of Geophysics, Polish Academy of Sciences.Google Scholar
Lowrie, W. 1990. Identification of ferromagnetic minerals in a rock by coercivity and unblocking temperature properties. Geophysical Research Letters 17, 159–62.CrossRefGoogle Scholar
Lyberis, N. & Manby, G. 1999. Continental collision and lateral escape deformation in the lower and upper crust: an example from Caledonide Svalbard.Tectonics 18 (1), 4063.CrossRefGoogle Scholar
Manby, G. M. 1978. Aspects of Caledonian metamorphism in central western Svalbard with particular reference to the glaucophane schists of Oscar II Land. Polarforschung 48, 92102.Google Scholar
Manby, G. M. 1990. The petrology of the Harkerbreen Group, Ny Friesland, Svalbard: protoliths and tectonic significance. Geological Magazine 127, 129–46.CrossRefGoogle Scholar
Manby, G. M. & Lyberis, N. 1992. Tectonic evolution of the Devonian Basin of Northern Svalbard. Norges Geologisk Tidsskrift 72 no.1, 721.Google Scholar
Manby, G. M., Lyberis, N., Chorowicz, J. & Theidig, F. 1994. Post Caledonian tectonics along the Billefjorden Fault Zone, Svalbard and implications for the Arctic Region. Geological Society of America Bulletin 105, 201–16.2.3.CO;2>CrossRefGoogle Scholar
Manecki, M., Holm, D. K., Czerny, J. & Lux, D. 1998. Thermochronological evidence for Late Proterozoic (Vendian) cooling in southwest Wedel Jarlsberg Land, Spitsbergen. Geological Magazine 135, 63–9.CrossRefGoogle Scholar
Mazur, S., Czerny, J., Majka, J., Manecki, M., Holm, D., Smyrak, A. & Wypych, A. 2009. A strike-slip terrane boundary in Wedel Jarlsberg Land, Svalbard, and its bearing on correlation of SW Spitsbergen with Pearya terrane and Timanide belt. Journal of the Geological Society, London 166, 529–44.CrossRefGoogle Scholar
Maloof, A. C., Halverson, G. P., Kirschwink, J. L., Schrag, D. P., Weiss, B. P. & Hoffman, P. F. 2006. Combined paleomagnetic, isotopic and stratigraphic evidence for true polar wander from the Neoproterozoic Akademikerbreen Group, Svalbard. Geological Society of America Bulletin 118, 1099–124.CrossRefGoogle Scholar
Mccabe, C., Van der Voo, R., Wilkinson, B. H. & Devaney, K. 1985. A Middle-Late Silurian palaeomagnetic pole from limestone reefs of the Wabash Formation (Indiana, USA). Journal of Geophysical Research 90, 2959–65.CrossRefGoogle Scholar
McFadden, P. L. & McElhinny, M. W. 1990. Classification of the reversal test in palaeomagnetism. Geophysical Journal International 103, 725–9.CrossRefGoogle Scholar
Mosar, J., Torsvik, T. H. & the BAT team. 2002. Opening of the Norwegian and Greenland Seas: plate tectonics in Mid Norway since the Late Permian. In BATLAS – Mid Norway Plate Reconstructions Atlas with Global and Atlantic Perspectives (Eide, coord. E. A.), pp. 4859. Trondheim: Geological Survey of Norway.Google Scholar
Ohta, Y. 1979. Blueschists from Motalafjella, western Spitsbergen. Norsk Polarinstitutt Skrifter 167, 171217.Google Scholar
Ohta, Y. & Dallmann, W. K. (eds) 1994. Geological map of Svalbard, 1:100 000 sheet B12G, Torellbreen. Norsk Polarinstitutt.Google Scholar
Roberts, D. 2003. The Scandinavian Caledonides: event chronology, palaeogeographic setting and likely modern analogues. Tectonophysics 365, 283–99.CrossRefGoogle Scholar
Skilbrei, J. R. 1992. Preliminary interpretation of aeromagnetic data from Spitsbergen, Svalbard Archipelago (76°–79° N): implications for structure of the basement. Marine Geology 106, 5368.CrossRefGoogle Scholar
Srivastava, S. P. 1985. Evolution of the Eurasian Basin and its implications to the motion of Greenland along the Nares Strait. Tectonophysics 114, 2953.CrossRefGoogle Scholar
Szlachta, K., Michalski, K., Brzózka, K., Górka, B. & Gałązka-Friedman, J. 2008. Comparison of magnetic and Mössbauer results obtained for Palaeozoic rocks of Hornsund, Southern Spitsbergen, Arctic. Proceedings of the Polish Mössbauer Community Meeting 2008. Acta Physica Polonica A 114 (6), 1675–82.CrossRefGoogle Scholar
Tarling, D. H. & Hrouda, F. 1993. The Magnetic Anisotropy of Rocks. London: Chapman & Hall, 217 pp.Google Scholar
Tauxe, L. 1996. Paleomagnetic Principles and Practice. Dordrecht, Boston, London: Kluwer Academic Publishers, 299 pp.Google Scholar
Tessensohn, F., Henes-Kunst, F. & Krumm, S. 2001. K/Ar dating attempts on rocks from the West Spitsbergen fold and thrust belt and the Central Basin. In Intracontinental Fold Belts, CASE I: West Spitsbergen (ed. Tessensohn, F.), pp. 719–28. Hannover: Geologisches Jahrbuch Reihe B, Band B91, Polar Issue No. 7.Google Scholar
Torsvik, T. H. 1984. Palaeomagnetism of the Foyers and Strontian granites, Scotland. Physics of the Earth and Planetary Interior 36, 163–77.CrossRefGoogle Scholar
Torsvik, T. H. 1985. Palaeomagnetic results from the Peterhead granite, Scotland: implication for regional late Caledonian magnetic overprinting. Physics of the Earth and Planetary Interior 39, 108–16.CrossRefGoogle Scholar
Torsvik, T. H. & Cocks, L. R. M. 2005. Norway in space and time: a centennial cavalcade. Norwegian Journal of Geology 85, 7386.Google Scholar
Torsvik, T. H. & Rehnström, E. F. 2001. Cambrian paleomagnetic data from Baltica: implications for true polar wander and Cambrian palaeogeography. Journal of the Geological Society, London 158, 321–9.CrossRefGoogle Scholar
Torsvik, T. H., Smethurst, M. A., Meert, J. G., Van der Voo, R., McKerrow, W. S., Brasier, M. D., Sturt, B. A. & Walderhaug, H. J. 1996. Continental break-up and collision in the Neoproterozoic and Palaeozoic – a tale of Baltica and Laurentia. Earth Science Reviews 40, 229–58.CrossRefGoogle Scholar
Trench, A. & Torsvik, T. H. 1991. The Lower Palaeozoic apparent polar wander path for Baltica: palaeomagnetic data from Silurian limestones of Gotland, Sweden. Geophysical Journal International 107, 373–9.CrossRefGoogle Scholar
Turnell, H. B. 1985. Palaeomagnetism and Rb-Sr ages of the Ratagan and Comrie intrusions. Geophysical Journal of the Royal Astronomical Society 83, 363–78.CrossRefGoogle Scholar
Van der Voo, R. 1993. Paleomagnetism of the Atlantic, Tethys and Iapetus Oceans. Cambridge: Cambridge University Press, 424 pp.Google Scholar
Vincenz, S. A., Cossack, D., Duda, S. J., Birkenmajer, K., Jeleńska, M., Kądziołko-Hofmokl, M. & Kruczyk, J. 1981. Palaeomagnetism of some late Mesozoic dolerite dikes of South Spitsbergen. Geophysical Journal of the Royal Astronomical Society 67, 599614.CrossRefGoogle Scholar
Vincenz, S. A., Jeleńska, M., Aiinehsazian, K. & Birkemajer, K. 1984. Palaeomagnetism of some late Mesozoic dolerite sills of East Central Spitsbergen, Svalbard Archipelago. Geophysical Journal of the Royal Astronomical Society 78, 751–73.CrossRefGoogle Scholar