Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-10T05:51:24.506Z Has data issue: false hasContentIssue false

A new mantle xenolith locality from Simien shield volcano, NW Ethiopia

Published online by Cambridge University Press:  06 November 2008

DEREJE AYALEW*
Affiliation:
Department of Earth Sciences, Addis Ababa University, P.O. Box 729/1033, Addis Ababa, Ethiopia
NICK ARNDT
Affiliation:
Laboratoire de Géodynamique des Chaînes Alpines, UMR 5025 CNRS, BP 53, 38041 Grenoble Cedex, France
FLORENCE BASTIEN
Affiliation:
Laboratoire de Géodynamique des Chaînes Alpines, UMR 5025 CNRS, BP 53, 38041 Grenoble Cedex, France
GEZAHEGN YIRGU
Affiliation:
Department of Earth Sciences, Addis Ababa University, P.O. Box 729/1033, Addis Ababa, Ethiopia
BRUNO KIEFFER
Affiliation:
Department of Earth and Ocean Sciences, University of British Columbia, Vancouver, BC, Canada
*
Author for correspondence: [email protected], [email protected]

Abstract

Thin-section observations and electron probe analyses, and trace element data are reported from a new mantle xenolith hosted in Miocene alkali basalt from the western flank of Simien shield volcano, Ethiopia. The spinel lherzolite enclaves contain variable proportions of olivine, orthopyroxene, green clinopyroxene and brown spinel, and have undergone deformation and partial recrystallization. They represent unmetasomatized, fertile xenoliths which were subjected to a late-stage melt–rock reaction. Trace element contents of clinopyroxene crystals are extremely low and quite different from those of the other xenoliths within the East African Rift System.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arai, S. 1994. Characterization of spinel peridotites by olivine-spinel compositional relationships: Review and interpretation. Chemical Geology 113, 191204.Google Scholar
Ayalew, D., Barbey, P., Marty, B., Reisberg, L., Yirgu, G. & Pik, R. 2002. Source, genesis and timing of giant ignimbrite deposits associated with Ethiopian continental flood basalts. Geochimica et Cosmochimica Acta 66, 1429–48.Google Scholar
Ayalew, D. & Yirgu, Y. 2003. Crustal contribution to the genesis of Ethiopian plateau rhyolitic ignimbrites: basalt and rhyolite geochemical provinciality. Journal of the Geological Society, London 160, 4756.Google Scholar
Ayalew, D., Yirgu, Y., Ketefo, E., Barbey, P. & Ludden, J. 2003. Intrusive equivalent of flood volcanics: evidence from petrology of xenoliths in Quaternary Tana basanites. SINET: Ethiopian Journal of Science 26, 93102.Google Scholar
Bali, E., Zanetti, A., Szabó, C., Peate, D. W. & Waight, T. E. 2008. A micro-scale investigation of melt production and extraction in the upper mantle based on silicate melt pockets in ultramafic xenoliths from the Bakony–Balaton Highland Volcanic Field (Western Hungary). Contributions to Mineralogy and Petrology 155, 165–79.CrossRefGoogle Scholar
Barnes, S. T. & Roeder, P. L. 2001. The Range of Spinel Compositions in Terrestrial Mafic and Ultramafic Rocks. Journal of Petrology 42, 2279–302.Google Scholar
Barrat, J. A., Keller, F., Amossé, J., Taylor, R. N., Nesbitt, R. W. & Hirata, T. 1996. Determination of rare earth elements in sixteen silicate reference samples by ICP-MS after Tm addition and ion exchange separation. Geostandards Newsletter 20, 133–9.Google Scholar
Bedini, R. M. & Bodinier, J. L. 1999. Distribution of incompatible trace elements between the constituents of spinel peridotite xenoliths; ICP-MS data from the East African Rift. Geochimica et Cosmochimica Acta 63, 3883–900.CrossRefGoogle Scholar
Bedini, R. M., Bodinier, J. L., Dautria, J. M. & Morten, L. 1997. Evolution of LILE-enriched small melt fractions in the lithospheric mantle; a case study from the East African Rift. Earth and Planetary Science Letters 153, 6783.CrossRefGoogle Scholar
Chazot, G., Menzies, M. A. & Harte, B. 1996. Determination of partition coefficients between apatite, clinopyroxene, amphibole, and melt in natural spinel lherzolites from Yemen: implications for wet melting of the lithospheric mantle. Geochimica et Cosmochimica Acta 60, 423–37.CrossRefGoogle Scholar
Conticelli, S., Sintoni, M. F., Abebe, T., Mazzarini, F. & Manetti, P. 1999. Petrology and geochemistry of ultramafic xenoliths and host lavas from the Ethiopian volcanic province: an insight into the upper mantle under eastern Africa. Acta Vulcanologica 11, 143–59.Google Scholar
Demény, A., Vennemann, T. W., Hegner, E., Nagy, G., Milton, J. A., Embey-Isztin, A., Homonnay, Z. & Dobosi, G. 2004. Trace element and C–O–Sr–Nd isotope evidence for subduction related carbonate–silicate melts in mantle xenoliths (Pannonian Basin, Hungary). Lithos 75, 89113.CrossRefGoogle Scholar
Dick, H. J. B. & Bullen, T. 1984. Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contributions to Mineralogy and Petrology 86, 5476.Google Scholar
Ferrando, S., Frezzotti, M. L., Neumann, E. R., De Astis, G., Peccerillo, A., Dereje, A., Gezahegn, Y. & Teklewold, A. 2008. Composition and thermal structure of the lithosphere beneath the Ethiopian plateau: evidence from mantle xenoliths in basanites, Injibara, Lake Tana Province. Mineralogy and Petrology 93, 4778.Google Scholar
Hofmann, C., Courtillot, V., Féraud, G., Rochette, P., Yirgu, G., Ketefo, E. & Pik, R. 1997. Timing of the Ethiopian flood basalt event and implications for plume birth and global change. Nature 389, 838–41.CrossRefGoogle Scholar
Ionov, D. A., Chazot, G., Chauvel, C., Merlet, C. & Bodinier, J. L. 2006. Trace element distribution in peridotite xenoliths from Tok, SE Siberian craton: a record of pervasive, multi-stage metasomatism in shallow refractory mantle. Geochimica et Cosmochimica Acta 70, 1231–60.Google Scholar
Ionov, D. A., Hofmann, A. W. & Shimizu, N. 1994. Metasomatism-induced melting in mantle xenoliths from Mongolia. Journal of Petrology 35, 753–85.Google Scholar
Kaeser, B., Kalt, A. & Pettke, T. 2006. Evolution of the lithospheric mantle beneath the Marsabit volcanic field (northern Kenya): constraints from textural, P–T and geochemical studies on xenoliths. Journal of Petrology 47, 2149–84.CrossRefGoogle Scholar
Kaeser, B., Kalt, A. & Pettke, T. 2007. Crystallization and Breakdown of Metasomatic Phases in Graphite-bearing Peridotite Xenoliths from Marsabit (Kenya). Journal of Petrology 48, 1725–60.CrossRefGoogle Scholar
Kieffer, B., Arndt, N., Lapierre, H., Bastien, F., Bosch, D., Pecher, A., Yirgu, G., Ayalew, D., Weis, D., Jerram, D. A., Keller, F. & Meugniot, C. 2004. Flood and Shield basalts from Ethiopia: magmas from the African superswell. Journal of Petrology 45, 793834.Google Scholar
Lorand, J.-P., Reisberg, L., Bedini, R. M., Horan, M. F., Brandon, A. D. & Neal, C. R. 2003. Platinum-group elements and melt percolation processes in Sidamo spinel peridotite xenoliths, Ethiopia, East African Rift. Chemical Geology 196, 5775.Google Scholar
McDonough, W. F. & Sun, S. S. 1995. The composition of the Earth. Chemical Geology 120, 223–53.CrossRefGoogle Scholar
Morten, L., Defrancesco, A. M., Bonavia, F. F., Haileselassie, G., Bargossi, G. M. & Bondi, M. 1992. A New Mantle Xenolith Locality from Southern Ethiopia. Mineralogical Magazine 56, 422–5.Google Scholar
Pik, R., Deniel, C., Coulon, C., Yirgu, G., Hofmann, C. & Ayalew, D. 1998. The northwestern Ethiopian plateau flood basalts: classification and spatial distribution of magma types. Journal of Volcanology and Geothermal Research 81, 91111.CrossRefGoogle Scholar
Rochette, P., Tamrat, E., Féraud, G., Pik, R., Courtillot, V., Ketefo, E., Coulon, C., Hofmann, C., Vandamme, D. & Yirgu, G. 1998. Magnetostratigraphy and timing of the Oligocene Ethiopian traps. Earth and Planetary Science Letters 164, 497510.Google Scholar
Roger, S., Dautria, J. M., Coulon, C., Pik, R., Yirgu, G., Michard, A., Legros, P. & Ayalew, D. 1999. An insight on the nature, composition and evolution of the lithospheric mantle beneath the north-western Ethiopian Plateau; the ultrabasic xenoliths from the Tana Lake Province. Acta Vulcanologica 11, 161–8.Google Scholar
Roger, S., Pik, R., Dautria, J. M., Coulon, C., Yirgu, G., Ayalew, D. & Legros, P. 1997. Rifting actif ou passif en Ethiopie? Elements de reponse apportes par l'etude des xenolites peridotitiques de la region du lac Tana. [Active or passive rifting in Ethiopia? Contribution of peridotitic xenoliths from the Lake Tana area.] Comptes Rendu de l'Academie des Sciences de Paris 324, 1009–16.Google Scholar
Rooney, T. O., Furman, T., Yirgu, G. & Ayalew, D. 2005. Structure of the Ethiopian lithosphere: evidence from mantle xenoliths. Geochimica et Cosmochimica Acta 69, 3889–910.Google Scholar
Shaw, S. J., Heidelbach, F. & Dingwell, D. B. 2006. The origin of reaction textures in mantle peridotite xenoliths from Sal Island, Cape Verde: the case for ‘metasomatism’ by the host lava. Contributions to Mineralogy and Petrology 151, 681–97.Google Scholar
Shimizu, N. 1975. Rare earth elements in garnets and clinopyroxenes from garnet lherzolite nodules in kimberlites. Earth and Planetary Science Letters 25, 2632.Google Scholar