Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-09T08:54:30.116Z Has data issue: false hasContentIssue false

A new limulid genus from the Strelovec Formation (Middle Triassic, Anisian) of northern Slovenia

Published online by Cambridge University Press:  07 May 2019

Russell D. C. Bicknell*
Affiliation:
Palaeoscience Research Centre, School of Environmental and Rural Science, University of New England, Armidale, 2351, Australia
Jure Žalohar
Affiliation:
T-TECTO, Koroška cesta 12, SI-4000 Kranj, Slovenia
Primož Miklavc
Affiliation:
Department of Geology, Faculty of Natural Sciences and Engineering, University of Ljubljana, Aškerčeva ceta 12, SI-1000 Ljubljana, Slovenia
Bogomir Celarc
Affiliation:
Geological Survey of Slovenia, Dimičeva ulica 14, SI–1000 Ljubljana, Slovenia
Matija Križnar
Affiliation:
Slovenian Museum of Natural History, Prešernova 20, SI-1000 Ljubljana, Slovenia
Tomaž Hitij
Affiliation:
Dental School, Faculty of Medicine, University of Ljubljana, Hrvatski trg 6, SI-1000 Ljubljana, Slovenia
*
*Author for correspondence: Russell D. C. Bicknell, Email: [email protected]

Abstract

Horseshoe crabs are an archetypal chelicerate group with a fossil record extending back to Early Ordovician time. Although extensively studied, the group generally has a low diversity across the Phanerozoic Eonothem. Here, we expand the known diversity of true horseshoe crabs (Xiphosurida) by the description of a new taxon from the Middle Triassic Strelovec Formation of the Slovenian Alps. The mostly complete fossil is preserved as an external mould and assigned to the family Limulidae Zittel, 1881 as Sloveniolimulus rudkini, n. gen., n. sp. The use of landmark and semilandmark geometric morphometrics is explored to corroborate the systematic palaeontology and suggests that the new genus and species are valid. We also provide the first quantitative evidence for the extensive diversity of Triassic horseshoe crabs. We suggest that Triassic horseshoe crabs likely filled many ecological niches left vacant after the end-Permian extinction.

Type
Original Article
Copyright
© Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, DC and Otárola-Castillo, E (2013) geomorph: an R package for the collection and analysis of geometric morphometric shape data. Methods in Ecology and Evolution 4(4), 393–9.CrossRefGoogle Scholar
Akbar John, B, Kamaruzzaman, BY, Jalal, KCA and Zaleha, K (2012) Feeding ecology and food preferences of Carcinoscorpius rotundicauda collected from the Pahang nesting grounds. Sains Malaysiana 41(7), 855–61.Google Scholar
Avise, JC, Nelson, WS and Sugita, H (1994) A speciational history of “Living Fossils”: Molecular evolutionary patterns in horseshoe crabs. Evolution 48(6), 19862001.Google ScholarPubMed
Babcock, LE and Merriam, DF (2000) Horseshoe crabs (Arthropoda: Xiphosurida) from the Pennsylvanian of Kansas and elsewhere. Transactions of the Kansas Academy of Science 103(1), 7694.CrossRefGoogle Scholar
Babcock, LE, Merriam, DF and West, RR (2000) Paleolimulus, an early limuline (Xiphosurida), from Pennsylvanian-Permian Lagerstätten of Kansas and taphonomic comparison with modern Limulus . Lethaia 33(3), 129–41.Google Scholar
Benson, RBJ, Campione, NE, Carrano, MT, Mannion, PD, Sullivan, C, Upchurch, P and Evans, DC (2014) Rates of dinosaur body mass evolution indicate 170 million years of sustained ecological innovation on the avian stem lineage. PLoS Biology 12(5), e1001853.CrossRefGoogle ScholarPubMed
Bicknell, RDC, Klinkhamer, AJ, Flavel, RJ, Wroe, S and Paterson, JR (2018 a) A 3D anatomical atlas of appendage musculature in the chelicerate arthropod Limulus polyphemus . PLoS ONE 13(2), e0191400.CrossRefGoogle ScholarPubMed
Bicknell, RDC, Ledogar, JA, Wroe, S, Gutzler, BC, Watson, III , WH and Paterson, JR (2018 b) Computational biomechanical analyses demonstrate similar shell-crushing abilities in modern and ancient arthropods. Proceedings of the Royal Society B: Biological Sciences 285, 20181935.CrossRefGoogle ScholarPubMed
Bicknell, RDC, Paterson, JR, Caron, J-B and Skovsted, CB (2018 c) The gnathobasic spine microstructure of Recent and Silurian chelicerates and the Cambrian artiopodan Sidneyia: Functional and evolutionary implications. Arthropod Structure & Development 47(1), 1224.CrossRefGoogle ScholarPubMed
Bicknell, RDC and Pates, S (2019) Abnormal extant xiphosurids in the Yale Peabody Museum Invertebrate Zoology collection. Bulletin of the Peabody Museum of Natural History 60(1), 41–53.CrossRefGoogle Scholar
Bicknell, RDC, Pates, S and Botton, ML (2018d) Abnormal xiphosurids, with possible application to Cambrian trilobites. Palaeontologia Electronica 21(2), 117.Google Scholar
Blagoderov, V, Grimaldi, DA and Fraser, NC (2007) How time flies for flies: diverse Diptera from the Triassic of Virginia and early radiation of the order. American Museum Novitates, 139.CrossRefGoogle Scholar
Błażejowski, B (2015) The oldest species of the genus Limulus from the Late Jurassic of Poland. In Changing Global Perspectives on Horseshoe Crab Biology, Conservation and Management (eds Carmichael, R H, Botton, ML, Shin, PKS and Cheung, SG), pp. 314. Switzerland: Springer.CrossRefGoogle Scholar
Błażejowski, B, Gieszcz, P and Tyborowski, D (2016) New finds of well-preserved Tithonian (Late Jurassic) fossils from the Owadów-Brzezinki Quarry, Central Poland: a review and perspectives. Volumina Jurassica 14(1), 123–32.Google Scholar
Botton, ML (1984) Diet and food preferences of the adult horseshoe crab Limulus polyphemus in Delaware Bay, New Jersey, USA. Marine Biology 81(2), 199207.CrossRefGoogle Scholar
Briggs, DE and Kear, AJ (1994) Decay and mineralization of shrimps. Palaios 9(5), 431–56.CrossRefGoogle Scholar
Briggs, DEG and Wilby, PR (1996) The role of the calcium carbonate-calcium phosphate switch in the mineralization of soft-bodied fossils. Journal of the Geological Society 153(5), 665–8.CrossRefGoogle Scholar
Brusatte, SL, Benton, MJ, Ruta, M and Lloyd, GT (2008a) The first 50 Myr of dinosaur evolution: macroevolutionary pattern and morphological disparity. Biology Letters 4(6), 733–6.CrossRefGoogle Scholar
Brusatte, SL, Benton, MJ, Ruta, M and Lloyd, GT (2008b) Superiority, competition, and opportunism in the evolutionary radiation of dinosaurs. Science 321(5 895), 1485–8.CrossRefGoogle Scholar
Buser, S, Kolar-Jurkovšek, T and Jurkovšek, B (2007) Triassic conodonts of the Slovenian Basin. Geologija 50(1), 1928.CrossRefGoogle Scholar
Buser, S, Kolar-Jurkovšek, T and Jurkovšek, B (2008) The Slovenian Basin during the Triassic in the light of conodont data. Bollettino della Società Geologica Italiana 127(2), 257–63.Google Scholar
Buser, S, Ramovš, A and Turnšek, D (1982) Triassic reefs in Slovenia. Facies 6(1), 1524.CrossRefGoogle Scholar
Celarc, B and Goričan, Š (2007) Diferenciran razpad anizijske (ilirske) karbonatne platforme v Julijskih Alpah (Prisojnik) in Kamniško-Savinjskih Alpah (Križevnik). Treatises, 18th Meeting of Slovenian Geologists 18, 11–5. Ljubljana: Univerza v Ljubljani.Google Scholar
Celarc, B, Goričan, Š and Kolar-Jurkovšek, T (2012) Middle Triassic carbonate-platform breakup and formation of small-scale half-grabens (Julian and Kamnik–Savinja Alps, Slovenia). Facies 59(3), 583610.CrossRefGoogle Scholar
Chiu, HMC and Morton, B (2003) The morphological differentiation of two horseshoe crab species, Tachypleus tridentatus and Carcinoscorpius rotundicauda (Xiphosura), in Hong Kong with a regional Asian comparison. Journal of Natural History 37(19), 2369–82.CrossRefGoogle Scholar
Coniglio, M and Dix, GR (1992) Carbonate slopes. In: Facies Models: Response to Sea-level Change (eds Walker, RG and James, NP). pp. 349–73. Canada: Geological Association of Canada.Google Scholar
Dunlop, JA and Lamsdell, JC (2017) Segmentation and tagmosis in Chelicerata. Arthropod Structure & Development 4(3), 396–418.Google Scholar
Dunlop, JA, Penney, D and Jekel, D (2018) A summary list of fossil spiders and their relatives. In World Spider Catalog, version 18.5. Natural History Museum, Bern.Google Scholar
Eldredge, N (1976) Differential evolutionary rates. Paleobiology 2(2), 174–7.CrossRefGoogle Scholar
Fairuz-Fozi, N, Satyanarayana, B, Zauki, NAM, Muslim, AM, Husain, M-L, Ibrahim, S and Nelson, BR (2018) Carcinoscorpius rotundicauda (Latreille, 1802) population status and spawning behaviour at Pendas coast, Peninsular Malaysia. Global Ecology and Conservation 15, e00422.CrossRefGoogle Scholar
Faurby, S, Nielsen, KSK, Bussarawit, S, Intanai, I, Van Cong, N, Pertoldi, C and Funch, P (2011) Intraspecific shape variation in horseshoe crabs: the importance of sexual and natural selection for local adaptation. Journal of Experimental Marine Biology and Ecology 407(2), 131–8.CrossRefGoogle Scholar
Fisher, DC (1981) The role of functional analysis in phylogenetic inference: examples from the history of the Xiphosura. American Zoologist 21(1), 4762.CrossRefGoogle Scholar
Fisher, DC (1982) Phylogenetic and macroevolutionary patterns within the Xiphosurida. Proceedings of the Third North American Paleontological Convention 1, 175–80. Toronto, Ontario: Business and Economic Service.Google Scholar
Fisher, DC (1984) The Xiphosurida: archetypes of bradytely? In Living Fossils (eds Eldredge, N and Stanley, SM), pp. 196213. New York: Springer.CrossRefGoogle Scholar
Flügel, E (2010) Microfacies of carbonate rocks: analysis, interpretation and application. New York: Springer.CrossRefGoogle Scholar
Haas, J, Kovacs, S, Krystyn, L and Lein, R (1995) Significance of Late Permian-Triassic facies zones in terrain reconstructions in the Alpine – North Pannonian domain. Tectonophysics 242(1), 1940.CrossRefGoogle Scholar
Hanor, JS (2004) A model of the origin of large carbonate- and evaporite-hosted celestine (SrSO4) deposits. Journal of Sedimentary Research 74(2), 168–75.CrossRefGoogle Scholar
Hauschke, N and Wilde, V (1987) Paleolimulus fuchsbergensis n. sp. (Xiphosura, Merostomata) aus der oberen Trias von Nordwestdeutschland, mit einer Übersicht zur Systematik und Verbreitung rezenter Limuliden. Paläontologische Zeitschrift 61(1/2), 87108.CrossRefGoogle Scholar
Hauschke, N, Wilde, V and Pietrzeniuk, E (1992) Ein Limulide aus dem Muschelkalk (mittlere Trias) von Rüdersdorf bei Berlin. Zeitschrift für geologische Wissenschaft 20(5/6), 461–6.Google Scholar
Heymons, R (1901) Die entwicklungsgeschichte der Scolopender. Zoologica 13, 1244.Google Scholar
Hitij, T, Tintori, A, Žalohar, J, Renesto, S, Celarc, B, Križnar, M and Kolar-Jurkovšek, T (2010 a) New fossil sites with Triassic vertebrate fauna from the Kamnik-Savinja Alps, Slovenia. In Proceedings of International Symposium on Triassic and later Marine Vertebrate Faunas, pp. 42–6. Beijing: School of Earth and Space Sciences; Peking University: Chinese Academy of Sciences.Google Scholar
Hitij, T, Žalohar, J, Celarc, B, Križnar, M, Renesto, S and Tintori, A (2010 b) The kingdom of Tethys: the fossilized world of Triassic Vertebrates from the Kamniško-Savinjske Alps. Scopolia Supplement 5, 197.Google Scholar
Holland, FD, Erickson, JM and O’Brien, DE (1975) Casterolimulus: a new late Cretaceous generic link in limulid lineage. Bulletin of American Paleontology 67(287), 235–49.Google Scholar
Hu, S, Zhang, Q, Feldmann, RM, Benton, MJ, Schweitzer, CE, Huang, J, Wen, W, Zhou, C, Xie, T, , T and Hong, S (2017) Exceptional appendage and soft-tissue preservation in a Middle Triassic horseshoe crab from SW China. Scientific Reports 7(1), 14112.CrossRefGoogle Scholar
Hu, S-X, Zhang, Q-Y, Chen, Z-Q, Zhou, C-Y, , T, Xie, T, Wen, W, Huang, J-Y and Benton, MJ (2011) The Luoping biota: exceptional preservation, and new evidence on the Triassic recovery from end-Permian mass extinction. Proceedings of the Royal Society B: Biological Sciences 278(1716), 2274–82.CrossRefGoogle ScholarPubMed
Jawahir, A, Samsur, M, Shabdin, ML and Rahim, K-AA (2017) Morphometric allometry of horseshoe crab, Tachypleus gigas at west part of Sarawak waters, Borneo, East Malaysia. Aquaculture, Aquarium, Conservation & Legislation, International Journal of the Bioflux Society 10(1), 1824.Google Scholar
Kaplan, R, Li, SSL and Kehoe, JM (1977) Molecular characterization of limulin, a sialic acid binding lectin from the hemolymph of the horseshoe crab, Limulus polyphemus . Biochemistry 16(19), 4297–303.CrossRefGoogle ScholarPubMed
Kin, A and Błażejowski, B (2014) The horseshoe crab of the genus Limulus: living fossil or stabilomorph? PLoS ONE 9(10), e108036.CrossRefGoogle ScholarPubMed
Kochansky-Devide, V and Pantić, S (1966) Meandrospira in der unteren und mittleren Triass einige begleitende Fossilien in den Dinariden. Geološki Vjesnik 19, 1528.Google Scholar
Lamsdell, JC (2016) Horseshoe crab phylogeny and independent colonizations of fresh water: ecological invasion as a driver for morphological innovation. Palaeontology 59(2), 181–94.CrossRefGoogle Scholar
Lamsdell, JC and McKenzie, SC (2015) Tachypleus syriacus (Woodward)—a sexually dimorphic Cretaceous crown limulid reveals underestimated horseshoe crab divergence times. Organisms Diversity & Evolution 15(4), 681–93.CrossRefGoogle Scholar
Lankester, ER (1881) Limulus an Arachnid. Quarterly Journal of Microscopical Science 23, 504649.Google Scholar
Lankester, ER (1904) The structure and classification of Arthropoda. Quarterly Journal of Microscopial Science 47, 523–82.Google Scholar
Latreille, PA (1802) Histoire naturelle, générale et particulière, des crustacés et des insects. Paris: F. Dufart.Google Scholar
Leach, WE (1819) Entomostraca. Dictionaire des Science Naturelles. Paris: Levrault and Schoell.Google Scholar
Lerner, AJ, Lucas, SG and Lockley, M (2017) First fossil horseshoe crab (Xiphosurida) from the Triassic of North America. Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen 286(3), 289302.CrossRefGoogle Scholar
Lerner, AJ, Lucas, SG and Mansky, CF (2016) The earliest paleolimulid and its attributed ichnofossils from the Lower Mississippian (Tournaisian) Horton Bluff Formation of Blue Beach, Nova Scotia, Canada. Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen 280(2), 193214.CrossRefGoogle Scholar
Miklavc, P, Celarc, B and Šmuc, A (2016) Anisian Strelovec Formation in the Robanov kot, Savinja Alps (Northern Slovenia). Geologija 59(1), 2334.CrossRefGoogle Scholar
Moore, RA, McKenzie, SC and Lieberman, BS (2007) A Carboniferous synziphosurine (Xiphosura) from the Bear Gulch Limestone, Montana, USA. Palaeontology 50(4), 1013–9.CrossRefGoogle Scholar
Müller, OF (1785) Entomostraca seu Insecta Testacea, quae in aquis Daniae et Norvegiae reperit, descripsit et iconibus illustravit. Leipzig and Copenhagen: Symtibus Bibliopolii J.G. Mülleriani, Müller, O. F. Lipsiae et Havniae.CrossRefGoogle Scholar
Münster, GGZ (1841) Beiträge zur Geognosie und Petrefacten-Kunde des Südöstlichen Tirol’s vorzüglich der Schichten von St. Cassian. Bayreuth: Buchner’schen Buchhandlung, pp. 152.Google Scholar
Obst, M, Faurby, S, Bussarawit, S and Funch, P (2012) Molecular phylogeny of extant horseshoe crabs (Xiphosura, Limulidae) indicates Paleogene diversification of Asian species. Molecular Phylogenetics and Evolution 62(1), 21–6.CrossRefGoogle ScholarPubMed
Owen, R (1872) On the anatomy of the American King-crab (Limulus polyphemus, Latr.). Transactions of the Linnean Society of London 28(3), 459506.Google Scholar
Piper, DJW and Stow, DAV (1991) Fine-grained turbidites. In Cyclic and Event Stratification (eds Einsele, G. and Seilacher, A.), pp. 360–76. Berlin: Springer.Google Scholar
Quenstedt, FA (1845) Petrefactenkunde Deutschlands, 1. Abteilung, 1. Band, Cephalopoden. Tübingen: Fues Verlag. 580 p.Google Scholar
Razak, MRM and Kassim, Z (2018) Food intake, gut transit time and defecation pattern of Asian horseshoe crab, Tachypleus gigas . ASM Science Journal 11(2), 5666.Google Scholar
Richter, R and Richter, E (1929) Weinbergina opitzi ng, n. sp., ein Schwertträger (Merost., Xiphos.) aus dem Devon (Rheinland). Senckenbergiana 11(3), 193209.Google Scholar
Riek, EF (1955) A new xiphosuran from the Triassic sediments at Brookvale, New South Wales. Records of the Australian Museum 23(5), 281–2.CrossRefGoogle Scholar
Riek, EF (1968) Re-examination of two arthropod species from the Triassic of Brookvale, New South Wales. Records of the Australian Museum 27(17), 313–21.CrossRefGoogle Scholar
Riek, EF and Gill, ED (1971) A new xiphosuran genus from Lower Cretaceous freshwater sediments at Koonwarra, Victoria, Australia. Palaeontology 14(2), 206–10.Google Scholar
Riska, B (1981) Morphological variation in the horseshoe crab Limulus polyphemus . Evolution 35(4), 647–58.Google ScholarPubMed
Rudkin, DM and Young, GA (2009) Horseshoe crabs–an ancient ancestry revealed. In Biology and Conservation of Horseshoe Crabs (eds Tanacredi, JT, Botton, ML and Smith, DR), pp. 2544. Boston: Springer.CrossRefGoogle Scholar
Ruta, M, Angielczyk, KD, Fröbisch, J and Benton, MJ (2013) Decoupling of morphological disparity and taxic diversity during the adaptive radiation of anomodont therapsids. Proceedings of the Royal Society of London B: Biological Sciences 280(1768), 20131071.CrossRefGoogle ScholarPubMed
Schmid, SM, Bernoulli, D, Fügenschuh, B, Matenco, L, Schefer, S, Schuster, R, Tischler, M, Ustaszewski, K (2008) The Alpine-Carpathian-Dinaridic orogenic system: correlation and evolution of tectonic units. Swiss Journal of Geosciences 101(1), 139–83.CrossRefGoogle Scholar
Schram, FR (1979) Limulines of the Mississippian Bear Gulch Limestone of Central Montana, USA. Transactions of the San Diego Society of Natural History 19(6), 6774.Google Scholar
Shultz, JW (2001) Gross muscular anatomy of Limulus polyphemus (Xiphosura, Chelicerata) and its bearing on evolution in the Arachnida. Journal of Arachnology 29(3), 283303.CrossRefGoogle Scholar
Shuster, CN Jr (1982) A pictorial review of the natural history and ecology of the horseshoe crab Limulus polyphemus, with reference to other Limulidae. Progress in Clinical and Biological Research 81, 152.Google ScholarPubMed
Shuster, CN Jr and Sekiguchi, K (2009) Basic habitat requirements of the extant species of horseshoe crabs (Limulacea). In Biology and Conservation of Horseshoe Crabs (eds Tanacredi, JT, Botton, ML and Smith, DR), pp. 115–29. Boston: Springer.CrossRefGoogle Scholar
Sokoloff, A (1978) Observations on populations of the horseshoe crab Limulus (= Xiphosura) polyphemus . Researches on Population Ecology 19(2), 222–36.CrossRefGoogle Scholar
Srijaya, TC, Pradeep, PJ, Mithun, S, Hassan, A, Shaharom, F and Chatterji, A (2010) A new record on the morphometric variations in the populations of horseshoe crab (Carcinoscorpius rotundicauda Latreille) obtained from two different ecological habitats of Peninsular Malaysia. Our Nature 8(1), 204–11.CrossRefGoogle Scholar
Stampfli, GM, Borel, GD, Marchant, R and Mosar, J (2002) Western Alps geological constraints on western Tethyian reconstructions. Journal of the Virtual Explorer 8, 75104 CrossRefGoogle Scholar
Størmer, L (1955) Merostomata. In Treatise on Invertebrate Paleontology, Part P, Arthropoda 2 (ed. Moore, RC), pp. 441. Lawrence, Kansas: Geological Society of America, University of Kansas.Google Scholar
Stow, DAV (1986) Deep clastic seas. In: Sedimentary Environments and Facies (ed. Reading, HG). pp. 400–44. Oxford: Blackwell Scientific Publications.Google Scholar
Tetlie, OE and Van Roy, P (2006) A reappraisal of Eurypterus dumonti Stainier, 1917 and its position within the Adelophthalmidae Tollerton, 1989. Bulletin de l’Institut Royal des Sciences Naturelles de Belgique, Sciences de la Terre 76, 7990.Google Scholar
Tintori, A, Hitij, T, Jiang, D and Sun, Z (2014) Triassic actinopterygian fishes: The recovery after the end-Permian crisis. Integrative Zoology 9(4), 394411.CrossRefGoogle ScholarPubMed
Van Roy, P, Briggs, DEG and Gaines, RR (2015) The Fezouata fossils of Morocco; an extraordinary record of marine life in the Early Ordovician. Journal of the Geological Society 172(5), 541–9.CrossRefGoogle Scholar
Van Roy, P, Orr, PJ, Botting, JP, Muir, LA, Vinther, J, Lefebvre, B, El Hariri, K and Briggs, DEG (2010) Ordovician faunas of Burgess Shale type. Nature 465(7295), 215–8.CrossRefGoogle ScholarPubMed
Vía Boada, L and De Villalta, JF (1966) Hetrolimulus gadeai, nov. gen., nov. sp., représentant d’une nouvelle famille de Limulacés dans le Trias d’Espagne. Comtes Rendues Sommaire Séances Societé Géologique France 8, 57–9.Google Scholar
Vičič, B, Vrabec, M, Gale, L, Hitij, T and Žalohar, J (2014) Stratigrafske in paleontološke raziskave Velike Planine. In Abstracts and Field Trips, 4th Slovenian Geological Congress (eds Rožič, B, Verbovšek, T and Vrabec, M), pp. 74–5. Ljubljana: University of Ljubljana.Google Scholar
Vijayakumar, R, Das, S, Chatterji, A and Parulekar, AH (2000) Morphometric characteristics in the horseshoe crab Tachypleus gigas (Arthropoda: Merostomata). Indian Journal of Marine Sciences 29(4), 333–5.Google Scholar
Waterston, CD (1985) Chelicerata from the Dinantian of Foulden, Berwickshire, Scotland. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 76(1), 2533.CrossRefGoogle Scholar
Woodward, H (1879) Contributions to the knowledge of fossil Crustacea. Quarterly Journal of the Geological Society 35(1), 549–56.CrossRefGoogle Scholar
Žalohar, J and Hitij, T (2013) Paleontološke raziskave v Anizijskih plasteh Strelovške formacije pod Vernerjem. Acta Triglavesia 2, 45.Google Scholar
Zheng, D, Chang, S-C, Wang, H, Fang, Y, Wang, J, Feng, C, Xie, G, Jarzembowski, EA, Zhang, H and Wang, B (2018) Middle-Late Triassic insect radiation revealed by diverse fossils and isotopic ages from China. Science Advances 4(9), eaat1380.CrossRefGoogle ScholarPubMed
Zittel, KAV (1881) Handbuch der Palaeontologie. I. Abtheilung, Palaeozoologie. München: R. Oldenbourg.Google Scholar
Supplementary material: File

Bicknell et al. supplementary material

Bicknell et al. supplementary material 1

Download Bicknell et al. supplementary material(File)
File 20.2 KB
Supplementary material: File

Bicknell et al. supplementary material

Bicknell et al. supplementary material 2

Download Bicknell et al. supplementary material(File)
File 288 Bytes
Supplementary material: File

Bicknell et al. supplementary material

Bicknell et al. supplementary material 3

Download Bicknell et al. supplementary material(File)
File 27.7 KB