Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-23T17:40:22.299Z Has data issue: false hasContentIssue false

New data on the microvertebrate fauna from the Upper Jurassic or lowest Cretaceous of Ksar Metlili (Anoual Syncline, eastern Morocco)

Published online by Cambridge University Press:  20 September 2019

Maxime Lasseron*
Affiliation:
CR2P – Centre de Recherche en Paléontologie – Paris, UMR 7207, MNHN-CNRS-Sorbonne Université, Muséum National d’Histoire Naturelle, 8 rue Buffon, CP38, 75005Paris, France
Ronan Allain
Affiliation:
CR2P – Centre de Recherche en Paléontologie – Paris, UMR 7207, MNHN-CNRS-Sorbonne Université, Muséum National d’Histoire Naturelle, 8 rue Buffon, CP38, 75005Paris, France
Emmanuel Gheerbrant
Affiliation:
CR2P – Centre de Recherche en Paléontologie – Paris, UMR 7207, MNHN-CNRS-Sorbonne Université, Muséum National d’Histoire Naturelle, 8 rue Buffon, CP38, 75005Paris, France
Hamid Haddoumi
Affiliation:
Département de Géologie, Faculté des Sciences, Université Mohamed 1er, BP 524, 60000Oujda, Morocco
Nour-Eddine Jalil
Affiliation:
CR2P – Centre de Recherche en Paléontologie – Paris, UMR 7207, MNHN-CNRS-Sorbonne Université, Muséum National d’Histoire Naturelle, 8 rue Buffon, CP38, 75005Paris, France Département Sciences de la Terre, Évolution des vertébrés et Paléoenvironnements, Faculté des Sciences Semlalia, Université Cadi Ayyad, Avenue Abdelkrim Khattabi, BP 511, 40000Marrakech, Morocco
Grégoire Métais
Affiliation:
CR2P – Centre de Recherche en Paléontologie – Paris, UMR 7207, MNHN-CNRS-Sorbonne Université, Muséum National d’Histoire Naturelle, 8 rue Buffon, CP38, 75005Paris, France
Jean-Claude Rage
Affiliation:
CR2P – Centre de Recherche en Paléontologie – Paris, UMR 7207, MNHN-CNRS-Sorbonne Université, Muséum National d’Histoire Naturelle, 8 rue Buffon, CP38, 75005Paris, France
Romain Vullo
Affiliation:
UMR-CNRS 6118 Géosciences Rennes, Université de Rennes 1, Campus de Beaulieu, 263 avenue du Général Leclerc, 35042Rennes, France
Samir Zouhri
Affiliation:
Département de Géologie, Faculté des Sciences Aïn Chock, Université Hassan II de Casablanca, Km 8, route de l’université, 20100Casablanca, Morocco
*
Author for correspondence: Maxime Lasseron, Email: [email protected]

Abstract

The Middle Jurassic – Early Cretaceous period witnessed the emergence of some major representatives of modern continental vertebrate groups (stem lissamphibians, squamates, therian mammals and birds) and angiosperms, at a time when fragmentation of Pangaea was underway. The successive Moroccan microvertebrate faunas of Ksar Metlili (?Berriasian) and Guelb el Ahmar (Bathonian) from the Anoual Syncline significantly improve our poor knowledge of Gondwanan and especially African palaeobiodiversity at this time. They are among the richest known from the Mesozoic of Gondwana, and are well placed in northwestern Africa to record faunal interchanges with Laurasia. Here we focus on the Ksar Metlili fauna, first documented in the 1980s and most recently resampled in 2010, which produced 24 541 microremains representing 47 species of 8 main groups (Chondrichthyes, Actinopterygii, Sarcopterygii, Lissamphibia, Lepidosauromorpha, Testudinata, Archosauromorpha and Synapsida). It includes remarkable taxa: the oldest stem boreosphenidan mammals from Gondwana, probably some of the last non-mammaliaform cynodonts, a basal ornithischian, possibly freshwater teleosaurid crocodylomorphs, and some of the rare occurrences of choristoderes and albanerpetontids in Gondwana. Comparison of the Ksar Metlili fauna with that of Guimarota (Kimmeridgian, Portugal) further provides evidence of numerous shared taxa of Laurasian affinities, in contrast to the occurrence of few taxa with Gondwanan affinities. This suggests complex palaeobiogeographical relationships – implying both vicariance and dispersal events – of North Africa within Gondwana at the Jurassic–Cretaceous transition. Finally, the faunal similarities with the Guelb el Ahmar fauna question the Cretaceous age of the Ksar Metlili fauna, suggesting an alternative possible Late Jurassic age.

Type
Original Article
Copyright
© Cambridge University Press 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allain, R and Aquesbi, N (2008) Anatomy and phylogenetic relationships of Tazoudasaurus naimi (Dinosauria, Sauropoda) from the late Early Cretaceous of Morocco. Geodiversitas 30, 345424.Google Scholar
Allain, R and Läng, E (2009) Origine et evolution des Saurischiens. Comptes Rendus Palevol 8, 243–56. doi: 10.1016/j.crpv.2008.09.013CrossRefGoogle Scholar
Anantharam, S, Wilson, GP, Das Sarma, DC and Clemens, WA (2006) A possible Late Cretaceous “Haramiyidan” from India. Journal of Vertebrate Paleontology 26, 488–90.CrossRefGoogle Scholar
Argyriou, T, Cook, TD, Muftah, AM, Pavlakis, P, Boaz, NT and Murray, AM (2015) A fish assemblage from an Early Miocene horizon from Jabal Zaltan, Lybia. Journal of African Earth Sciences 102, 86101. doi: 10.1016/j.jafrearsci.2014.11.008CrossRefGoogle Scholar
Averianov, AO, Martin, T and Bakirov, AA (2005) Pterosaur and dinosaur remains from the Middle Jurassic Balabansai Svita in the Northern Fergana Depression, Kyrgyzstan (Central Asia). Palaeontology 48, 135–55. doi: 10.1111/j.1475-4983.2004.00437.xCrossRefGoogle Scholar
Averianov, AO, Martin, T, Evans, SE and Bakirov, AA (2006) First Jurassic Choristodera from Asia. Naturwissenschaften 93, 4650. doi: 10.1007/s00114-005-0061-2CrossRefGoogle ScholarPubMed
Averianov, AO, Martin, T, Lopatin, AV, Schultz, JA, Skutschas, PP, Rico, S and Krasnolutskii, SA (2017) A tritylodontid synapsid from the Middle Jurassic of Siberia and the taxonomy of derived tritylodontids. Journal of Vertebrate Paleontology 37 e1363767, 11 pp. doi: 10.1080/02724634.2017.1363767CrossRefGoogle Scholar
Averianov, AO, Martin, T, Lopatin, AV, Skutschas, PP, Schellhorn, R, Kolosov, P and Vitenko, D (2018) A high-latitude fauna of mid-Mesozoic mammals from Yakutia, Russia. PLoS ONE 13 e0199983, 17 pp. doi: 10.1371/journal.pone.0199983CrossRefGoogle ScholarPubMed
Averianov, AO, Martin, T, Skutschas, PP, Danilov, I, Schultz, JA, Schellhorn, R, Obraztsova, E, Lopatin, AV, Sytchevskaya, E, Kuzmin, I, Krasnolutskii, SA and Ivantsov, SV (2016) Middle Jurassic assemblage of Berezovsk coal mine in Western Siberia. Global Geology 19, 187204. doi: 10.3969/j.issn.1673-9736.2016.04.01Google Scholar
Avrahami, HM, Gates, TA, Heckert, AB, Makovicky, PJ and Zanno, LE (2018) A new microvertebrate assemblage from the Mussentuchit Member, Cedar Mountain Formation: insights into the paleobiodiversity and paleobiogeography of early Late Cretaceous ecosystems in western North America. PeerJ 6, e5883, 52 pp. doi: 10.7717/peerj.5883CrossRefGoogle ScholarPubMed
Bardet, N (1995) Évolution et extinction des reptiles marins au cours du Mésozoïque. Palaeovertebrata 24, 177283.Google Scholar
Berendse, F and Scheffer, M (2009) The angiosperm radiation revisited, an ecological explanation for Darwin’s ‘abominable mystery’. Ecology Letters 12, 865–72. doi: 10.1111/j.1461-0248.2009.01342.xCrossRefGoogle ScholarPubMed
Biddle, JP and Landemaine, O (1988) Contribution à l’étude des Sélaciens du bassin de Paris : découverte de quelques nouvelles espèces associées à une faune de type wealdien dans le Barrémien supérieur, Crétacé inférieur, des environs de Troyes (Aube). Musée de Saint-Dizier, Cahier 2, 122.Google Scholar
Blakey, RC (2008) Gondwana paleogeography from assembly to breakup-A 500 m.y. odyssey. In Resolving the Late Paleozoic Ice Age in Time and Space (eds Fielding, CR, Frank, TD and Isbell, JL), pp. 128. Geological Society of America, Special Paper no. 441.Google Scholar
Blob, RW and Fiorillo, AR (1996) The significance of vertebrate microfossil size and shape distributions for faunal abundance reconstructions: a Late Cretaceous example. Paleobiology 22, 422–35. doi: 10.1017/S0094837300016377CrossRefGoogle Scholar
Brandalise de Andrade, M, Young, MT, Desojo, JB and Brusatte, SL (2010) The evolution of extreme hypercarnivory in Metriorhynchidae (Mesoeucrocodylia: Thalattosuchia) based on evidence from microscopic denticle morphology. Journal of Vertebrate Paleontology 30, 1451–65. doi: 10.1080/02724634.2010.501442CrossRefGoogle Scholar
Brinkman, DB (1990) Paleoecology of the Judith River Formation (Campanian) Of Dinosaur Provincial Park, Alberta, Canada: evidence from vertebrate microfossil localities. Palaeogeography, Palaeoclimatology, Palaeoecology 78, 3754. doi: 10.1016/0031-0182(90)90203-JCrossRefGoogle Scholar
Brinkman, DB, Russell, AP, Eberth, DA and Peng, J (2004) Vertebrate paleocommunities of the lower Judith River Group of southeastern Alberta, Canada, as interpreted from vertebrate microfossil assemblages. Palaeogeography, Palaeoclimatology, Palaeoecology 213, 295313. doi: 10.1016/j.palaeo.2004.07.016CrossRefGoogle Scholar
Broschinski, A (1999) Ein Lacertilier (Scincomorpha, Paramacellodidae) aus dem Oberen Jura von Tendaguru (Tansania). Mitteilungen aus dem Museum für Naturkunde zu Berlin, Geowissenschaftliche Reihe 2, 155–58. doi: 10.1002/mmng.1999.4860020111Google Scholar
Broschinski, A and Sigogneau-Russell, D (1996) Remarkable lizard remains from the Lower Cretaceous of Anoual (Morocco). Annales de Paléontologie (Vertébrés-Invertébrés) 82, 174–5.Google Scholar
Buffetaut, E and Jeffery, P (2012) A ctenochasmatid pterosaur from the Stonesfield Slate (Bathonian, Middle Jurassic) of Oxfordshire, England. Geological Magazine 149, 552–6. doi: 10.1017/S0016756811001154CrossRefGoogle Scholar
Butler, PM and Sigogneau-Russell, D (2016) Diversity of triconodonts in the Middle Jurassic of Great Britain. Palaeontologia Polonica 67, 3565. doi: 10.4202/pp.2016.67_035Google Scholar
Caldwell, MW, Nydam, RL, Palci, A and Apesteguía, S (2015) The oldest known snakes from the Middle Jurassic–Lower Cretaceous provide insights on snake evolution. Nature Communications 6, 111. doi: 10.1038/ncomms6996CrossRefGoogle ScholarPubMed
Carpenter, K and Galton, PM (2018) A photo documentation of bipedal ornithischians dinosaurs from the Upper Jurassic Morrison Formation, USA. Geology of the Intermountain West 5, 167207.CrossRefGoogle Scholar
Cecca, F, Azema, J, Fourcade, E, Baudin, F, Guiraud, R and Dever, P (1993) Early Kimmeridgian Palaeoenvironments (146–144 Ma) Map 1:20,000,000. In Atlas Tethys Palaeoenvironmental Maps (eds Dercourt, J, Ricou, LE and Vrielynck, B). Paris:CCGM.Google Scholar
Charrière, A and Haddoumi, H (2016) Les ‘Couches rouges’ continentales jurassico-crétacées des Atlas marocains (Moyen Atlas, Haut Atlas central et oriental): bilan stratigraphique, paléogéographies successives et cadre géodynamique. Boletín Geológico y Minero 127, 407–30.Google Scholar
Charrière, A and Haddoumi, H (2017) Dater les couches rouges continentales pour définir la géodynamique atlasique. Géologues 194, 2932.Google Scholar
Cifelli, RL, Davis, BM and Sames, B (2014) Earliest Cretaceous mammals from the western United States. Acta Palaeontologica Polonica 59, 3152. doi: 10.4202/app.2012.0089Google Scholar
Cifelli, RL, Lipka, TR, Schaff, CR and Rowe, TB (1999) First Early Cretaceous mammal from the eastern seaboard of the United States. Journal of Vertebrate Paleontology 19, 199203. doi: 10.1080/02724634.1999.10011134CrossRefGoogle Scholar
Clemens, WA, Goodwin, MB, Hutchinson, JH, Schaff, CR, Wood, CB and Colbert, MW (2007) First record of a Jurassic mammal (?”Peramura”) from Ethiopia. Acta Palaeontologica Polonica 52, 433–9.Google Scholar
Cullen, TM, Fanti, F, Capobianco, C, Ryan, MJ and Evans, DC (2016) A vertebrate microsite from a marine-terrestrial transition in the Foremost Formation (Campanian) of Alberta, Canada, and the use of faunal assemblage data as palaeoenvironmental indicator. Palaeogeography, Palaeoclimatology, Palaeoecology 444, 101–14. doi: 10.1016/j.palaeo.2015.12.015CrossRefGoogle Scholar
Daget, J, Gayet, M, Meunier, FJ and Sire, J-Y (2001) Major discoveries on the dermal skeleton of fossil and Recent polypteriforms: a review. Fish and Fisheries 2, 113–24.CrossRefGoogle Scholar
Datta, PM, Das, DP, Luo, ZX (2004) A Late Triassic dromatheriid (Synapsida: Cynodontia) from India. Annals of Carnegie Museum 73, 7284.Google Scholar
Dercourt, J, Gaetani, M, Vrielynck, B, Barrier, E, Biju-Duval, B, Brunet, MF, Cadet, JP, Crasquin, S and Sandulescu, M (eds) (2000) Atlas Peri-Tethys Palaeogeographical Maps. Paris: Commission de la carte géologique du monde, 24 pp.Google Scholar
Duffin, CJ and Sigogneau-Russell, D (1993) Fossil shark teeth from the Early Cretaceous of Anoual, Morocco. Belgian Geological Survey Professional Paper 264, 175–90.Google Scholar
Estes, R and Berberian, P (1970) Paleoecology of a Late Cretaceous vertebrate community of from Montana. Breviora 343, 135.Google Scholar
Evans, SE (1991) The postcranial skeleton of the choristodere Cteniogenys (Reptilia: Diapsida) from the Middle Jurassic of England. Geobios 24, 187–99. doi: 10.1016/S0016-6995(91)80006-LCrossRefGoogle Scholar
Evans, SE (2003) At the feet of the dinosaurs: the early history and radiation of lizards. Biological Review 78, 513–51. doi: 10.1017/S1464793103006134CrossRefGoogle ScholarPubMed
Evans, SE and Jones, MEH (2010) The origin, early history and diversification of lepidosauromorph reptiles. In New Aspects of Mesozoic Biodiversity (ed. Bandyopadhyay, S), pp. 2744. Lecture Notes in Earth Sciences no. 132. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Evans, SE, Prasad, GVR and Manhas, BK (2001) Rhynchocephalians (Diapsida: Lepidosauria) from the Jurassic Kota Formation of India. Zoological Journal of the Linnean Society 133, 309–34. doi: 10.1006/zjls.2000.0266CrossRefGoogle Scholar
Evans, SE and Sigogneau-Russell, D (1997) New sphenodontians (Diapsida: Lepidosauria: Rhynchocephalia) from the Early Cretaceous of North Africa. Journal of Vertebrate Paleontology 17, 4551. doi: 10.1080/02724634.1997.10010952CrossRefGoogle Scholar
Evans, SE and Sigogneau-Russell, D (2001) A stem-group caecilian (Lissamphibia: Gymnophiona) from the Lower Cretaceous of North Africa. Palaeontology 44, 259–73. doi: 10.1111/1475-4983.00179CrossRefGoogle Scholar
Fischer, R (1991) Die Oberjura-Schichtenfolge des Langenbergs bei Oker. Arbeitskreis Paläontologie Hannover 19, 2136.Google Scholar
Flynn, JJ, Fox, SR, Parrish, JM, Ranivoharimanana, L and Wyss, AR (2006) Assessing diversity and paleoecology of a Middle Jurassic microvertebrate assemblage from Madagascar. In The Triassic–Jurassic Terrestrial Transition (eds Harris, JD, Lucas, SG, Spielmann, JA, Lockley, MG, Milner, ARC & Kirkland, JI), pp. 476–89. New Mexico Museum of Natural History and Science Bulletin no. 37.Google Scholar
Frederickson, JA, Lipka, TR and Cifelli, RL (2018) Faunal composition and paleoenvironment of the Arundel Clay (Potomac Formation; Early Cretaceous), Maryland, USA. Palaeontologica Electronica 21.2.31A, 124. doi: 10.26879/847CrossRefGoogle Scholar
Gaetano, LC and Rougier, GW (2007) New triconodont specimens from the Middle Jurassic of Patagonia. Ameghiniana 44, 19R.Google Scholar
Gaetano, LC and Rougier, GW (2010) New specimens and phylogenetic relationships of the South American Jurassic triconodont Argentoconodon fariasorum. Journal of Vertebrate Paleontology 28, 93A. doi: 10.1080/02724634.2011.589877Google Scholar
Gaetano, LC and Rougier, GW (2011) New materials of Argentoconodon fariasorum (Mammaliaformes, Triconodontidae) from the Jurassic of Argentina and its bearing on triconodont phylogeny. Journal of Vertebrate Paleontology 31, 829–43. doi: 10.1080/02724634.2011.589877CrossRefGoogle Scholar
Gardner, JD, Evans, SE and Sigogneau-Russell, D (2003) New albanerpetontid amphibians from the Early Cretaceous of Morocco and Middle Jurassic of England. Acta Palaeontologica Polonica 48, 301–19.Google Scholar
Gayet, M and Meunier, FJ (2003) Palaeontology and palaeobiogeography of catfishes. Catfishes 2, 491522.Google Scholar
Gayet, M, Meunier, FJ and Werner, C (2002) Diversification in Polypteriformes and special comparison with Lepisosteiformes. Palaeontology 45, 361–76. doi: 10.1111/1475-4983.00241CrossRefGoogle Scholar
Gayet, M and Otero, O (1999) Analyse de la paléodiversification des Siluriformes. Geobios 32, 235–46. doi: 10.1016/S0016-6995(99)80037-0CrossRefGoogle Scholar
Gheerbrant, E and Rage, J-C (2006) Paleobiogeography of Africa: how distinct from Gondwana and Laurasia? Palaeogeography, Palaeoclimatology, Palaeoecology 241, 224–46. doi: 10.1016/j.palaeo.2006.03.016CrossRefGoogle Scholar
Gmira, S (1995) Étude des chéloniens fossiles du Maroc: anatomie, systématique, phylogénie. Cahiers de Paléontologie 25, 1174.Google Scholar
Godefroit, P and Battail, B (1997) Late Triassic cynodonts from Saint-Nicolas-de-Port (north-eastern France). Geodiversitas 19, 567–31.Google Scholar
Haddoumi, H, Allain, R, Meslouh, S, Métais, G, Monbaron, M, Pons, D, Rage, J-C, Vullo, R, Zouhri, S and Gheerbrant, E (2016) Guelb el Ahmar (Bathonian, Anoual Syncline, eastern Morocco): first continental flora and fauna including mammals from the Middle Jurassic of Africa. Gondwana Research 29, 290319. doi: 10.1016/j.gr.2014.12.004CrossRefGoogle Scholar
Haddoumi, H, Alméras, Y, Bodergat, AM, Charrière, A, Mangold, C and Benshili, K (1998) Âges et environnements des Couches rouges d’Anoual (Jurassique moyen et Crétacé inférieur, Haut-Atlas oriental, Maroc). Comptes Rendus de l’Académie des Sciences de Paris Série II 327, 127–33. doi: 10.1016/S1251-8050(98)80043-8Google Scholar
Haddoumi, H, Charrière, A, Andreu, B and Mojon, PO (2008) Les dépôts continentaux du Jurassique moyen au Crétacé inférieur dans le Haut-Atlas oriental (Maroc): paléoenvironnements successifs et signification paléogéographique. Carnets de Géologie, Brest, Mémoire 2008/06, 29 pp. doi: 10.4267/2042/18122CrossRefGoogle Scholar
Hahn, G and Hahn, R (2003) New multituberculate teeth from the Early Cretaceous of Morocco. Acta Palaeontologica Polonica 48, 349–56.Google Scholar
Heimhofer, U, Hochuli, PA, Burla, S and Weissert, H (2005) New records of Early Cretaceous angiosperm pollen from Portuguese coastal deposits: implications for the timing of the early angiosperm radiation. Review of Palaeobotany and Palynology 144, 3976. doi: 10.1016/j.revpalbo.2005.09.006CrossRefGoogle Scholar
Heinrich, WD (1999) First haramiyid (Mammalia, Allotheria) from the Mesozoic of Gondwana. Fossil Record 2, 159–70. doi: 10.1002/mmng.1999.4860020112CrossRefGoogle Scholar
Heinrich, WD (2001) New record of Staffia aenigmantica (Mammalia, Allotheria, Haramiyida) from the Upper Jurassic of Tendaguru in southeastern Tanzania, East Africa. Fossil Record 4, 239–55. doi: 10.1002/mmng.20010040114CrossRefGoogle Scholar
Heinrich, WD (2004) Allostaffia, a new genus name for Staffia Heinrich, 1999 (Allotheria, Haramiyida) preoccupied by Staffia Schubert, 1911 (Protista, Foraminifera). Fossil Record 7, 153. doi: 10.1002/mmng.20040070108CrossRefGoogle Scholar
Hendrickx, C, Mateus, O and Araújo, R (2015) The dentition of megalosaurid theropods. Acta Palaeontologica Polonica 60, 627–42. doi: 10.4202/app.00056.2013Google Scholar
Hochuli, PA, Heimhofer, U and Weissert, H (2006) Timing of early angiosperm radiation: recalibrating the classical succession. Journal of the Geological Society, London 163, 587–94. doi: 10.1144/0016-764905-135CrossRefGoogle Scholar
Holman, JA (2003) Fossil Frogs and Toads of North America. Bloomington: Indiana University Press, 264 pp.Google Scholar
Humphries, S, Bonser, RHC, Witton, MP and Martill, DM (2007) Did pterosaurs feed by skimming? Physical modelling and anatomical evaluation of an unusual feeding method. PLoS Biology 5 e204. doi: 10.1371/journal.pbio.0050204CrossRefGoogle ScholarPubMed
Huttenlocker, AK, Grossnickle, DM, Kirkland, JI, Schultz, JA and Luo, Z-X (2018) Late-surviving stem mammal links the lowermost Cretaceous of North America and Gondwana. Nature 558, 108–12. doi: 10.1038/s41586-018-0126-yCrossRefGoogle ScholarPubMed
Jamniczky, HA, Brinkman, DB and Russell, AP (2008) How much is enough? A repeatable, efficient, and controlled sampling protocol for assessing taxonomic diversity and abundance in vertebrate microfossil assemblages. In Vertebrate Microfossil Assemblages: Their Role in Paleoeocology and Paleobiogeography (eds Sankey, JTand Baszio, S), pp. 916. Bloomington: Indiana University Press.Google Scholar
Ji, Q, Luo, Z-X, Yuan, CX, Wible, JR, Zhang, JP and Georgi, JA (2002) The earliest known eutherian mammal. Nature 416, 816–22. doi: 10.1038/416816aCrossRefGoogle ScholarPubMed
Jones, MEH, Evans, SE and Sigogneau-Russell, D (2003) Early Cretaceous frogs from Morocco. Annals of Carnegie Museum 72, 6597.Google Scholar
Karl, HV, Gröning, E, Brauckmann, C, Schwarz, D and Knötschke, N (2006) The Late Jurassic crocodiles of the Langenberg near Oker, Lower Saxony (Germany), and description of related materials (with remarks on the history of quarrying the “Langenberg Limestone” and “Obernkirchen Sandstone”). Clausthaler Geowissenschaften 5, 5977.Google Scholar
Kielan-Jaworowska, Z, Cifelli, RL and Luo, Z-X (2004) Mammals from the Age of Dinosaurs: Origins, Evolution and Structure. New York: Columbia University Press, 640 pp.CrossRefGoogle Scholar
Kielan-Jaworowska, Z and Dashzeveg, D (1998) Early Cretaceous amphilestid (‘triconodont’) mammals from Mongolia. Acta Palaeontologica Polonica 43, 413–38.Google Scholar
Kilian, C (1931) Des principaux complexes continentaux du Sahara. Comptes Rendus de la Société géologique de France 9, 109–11.Google Scholar
Knoll, F (2000) Pterosaurs from the Lower Cretaceous (?Berriasian) of Anoual, Morocco. Annales de Paléontologie 86, 157–64. doi: 10.1016/S0753-3969(00)80006-3CrossRefGoogle Scholar
Knoll, F and Ruiz-Omeñaca, JI (2009) Theropod teeth from the basalmost Cretaceous of Anoual (Morocco) and their palaeobiogeographical significance. Geological Magazine 146, 602–16. doi: 10.1017/S0016756809005950CrossRefGoogle Scholar
Kovalchuk, O and Ferraris, CJ (2016) Late Cenozoic catfishes of southeastern Europe with inference to their taxonomy and palaeogeography. Palaeontologia Electronica 19.3.34A, 17 pp. doi: 10.26879/616CrossRefGoogle Scholar
Kriwet, J (2000) The fish fauna from the Guimarota mine. In Guimarota: A Jurassic Ecosystem (eds Martin, Tand Krebs, B), pp. 4150. Munich: Verlag Dr. Friedrich Pfeil.Google Scholar
Kriwet, J (2002) Pycnodont fish remains (Neopterygii: Pycnodontiformes) from the Kimmeridgian (Upper Jurassic) of the Lusitanian Basin (Central Portugal). Neues Jahrbuch für Geologie und Paläontologie Monatshefte 10, 577–87.CrossRefGoogle Scholar
Kriwet, J (2004) Late Jurassic selachians (Chondrichthyes: Hybodontiformes, Neoselachii) from Central Portugal. Neues Jahrbuch für Geologie und Paläontologie Monatshefte 4, 233–56.CrossRefGoogle Scholar
Lapparent, AF de (1960) Les Dinosauriens du “Continental Intercalaire” du Sahara central. Mémoires de la Société géologique de France (Nouvelle Série) 88A, 157.Google Scholar
Lasseron, M (2019) Enigmatic teeth from the Jurassic–Cretaceous transition of Morocco: the latest known non-mammaliaform cynodonts (Synapsida, Cynodontia) from Africa? Comptes Rendus Palevol, published online 9 July 2019. doi: 10.1016/j.crpv.2019.05.002CrossRefGoogle Scholar
Li, ZX, Powell, CMcA (2001) An outline of the palaeogeographic evolution of the Australasian region since the beginning of the Neoproterozoic. Earth-Science Reviews 53, 237–77. doi: 10.1016/S0012-8252(00)00021-0CrossRefGoogle Scholar
Lopatin, AV and Agadjanian, AK (2008) A tritylodont (Tritylodontidae, Synapsida) from the Mesozoic of Yakutia. Doklady Biological Sciences 419, 279–82. doi: 10.1134/S0012496608020117CrossRefGoogle ScholarPubMed
Lubbe, T van der, Richter, U and Knötschke, N (2009) Velociraptorine dromaeosaurid teeth from the Kimmeridgian (Late Jurassic) of Germany. Acta Palaeontologica Polonica 54, 401–8. doi: 10.4202/app.2008.0007CrossRefGoogle Scholar
Lucas, SG and Oakes, W (1988) A Late Triassic cynodont from the American South-West. Palaeontology 31, 445–9.Google Scholar
Luo, Z-X, Cifelli, RL and Kielan-Jaworowska, Z (2001) Dual origin of tribosphenic mammals. Nature 409, 53–7. doi: 10.1038/35051023CrossRefGoogle ScholarPubMed
Luo, Z-X, Ji, K, Wible, JR and Yuan, CX (2003) An Early Cretaceous tribosphenic mammal and metatherian evolution. Science 302, 1934–40. doi: 10.1126/science.1090718CrossRefGoogle ScholarPubMed
Luo, Z-X, Kielan-Jaworowska, Z and Cifelli, RL (2002) In quest for a phylogeny of Mesozoic mammals. Acta Palaeontologica Polonica 47, 178.Google Scholar
Luo, Z-X, Yuan, CX, Meng, QJ and Ji, Q (2011) A Jurassic eutherian mammal and divergence of marsupials and placentals. Nature 476, 442–5. doi: 10.1038/nature10291CrossRefGoogle ScholarPubMed
Marjanović, D and Laurin, M (2007) Fossils, molecules, divergence times, and the origin of lissamphibians. Systematic Biology 56, 369–88. doi: 10.1080/10635150701397635CrossRefGoogle ScholarPubMed
Martill, DM, Brito, PM and Washington-Evans, J (2008) Mass mortality of fishes in the Santana Formation (Lower Cretaceous, ?Albian) of northeast Brazil. Cretaceous Research 29, 649–58. doi: 10.1016/j.cretres.2008.01.012CrossRefGoogle Scholar
Martin, JE, Deesri, U, Liard, R, Wattanapituksakul, A, Suteethorn, S, Lauprasert, K, Tong, H, Buffetaut, E, Suteethorn, V, Suan, G, Telouk, P and Balter, V (2015) Strontium isotopes and the long-term residency of thalattosuchians in the freshwater environment. Paleobiology 42, 143–56. doi: 10.1017/pab.2015.42CrossRefGoogle Scholar
Martin, T (1999) Dryolestidae (Dryolestoidea, Mammalia) aus dem Oberen Jura von Portugal. Abhandlungen der senckenbergischen naturforschenden Gesellschaft 550, 118.Google Scholar
Martin, T (2000) The dryolestoids and the primitive “peramurid” from the Guimarota mine. In Guimarota: A Jurassic Ecosystem (eds Martin, Tand Krebs, B), pp. 109–20. Munich: Verlag Dr. Friedrich Pfeil.Google Scholar
Martin, T (2001) Mammalian fauna of the Late Jurassic Guimarota ecosystem. Asociación Paleontológica Argentina Publicación Especial 7, 123–6.Google Scholar
Martin, T (2002) New stem-lineage representatives of Zatheria (Mammalia) from the Late Jurassic of Portugal. Journal of Vertebrate Paleontology 22, 332–48. doi: 10.1671/0272-4634(2002)022[0332:NSLROZ]2.0.CO;2CrossRefGoogle Scholar
Martin, T and Krebs, B (eds) (2000) Guimarota: A Jurassic Ecosystem. Munich: Verlag Dr. Friedrich Pfeil, 156 pp.Google Scholar
Martínez, RN, Apaldetti, C, Colombi, CE, Praderio, A, Fernandez, E, Malnis, PS, Correa, GA, Abelin, D and Alcober, O (2013) A new sphenodontia (Lepidosauria: Rhynchocephalia) from the Late Triassic of Argentina and the early origin of the herbivore opisthodontians. Proceedings of the Royal Society B, London 280, 2013–57. doi: 10.1098/rspb.2013.2057CrossRefGoogle ScholarPubMed
Mateer, NJ, Wycisk, P, Jacobs, LL, Brunet, M, Luger, P, Arush, MA, Hendriks, F, Weissbrod, T, Gvirtzman, G, Mbede, E, Dina, A, Moody, RTJ, Weigelt, G, El-Nakhal, HA, Hell, J and Stets, J (1992) Correlation of nonmarine Cretaceous strata of Africa and the Middle East. Cretaceous Research 13, 273318. doi: 10.1016/0195-6671(92)90003-9CrossRefGoogle Scholar
Matsumoto, R, Buffetaut, E, Escuillié, F, Hervet, S and Evans, SE (2013) New material of the choristodere Lazarussuchus (Diapsida, Choristodera) from the Paleocene of France. Journal of Vertebrate Paleontology 33, 319–39. doi: 10.1080/02724634.2012.716274CrossRefGoogle Scholar
Matsuoka, H, Kusuhashi, N and Corfe, I (2016) A new Early Cretaceous tritylodontid (Synapsida, Cynodontia, Mammaliamorpha) from the Kuwajima Formation (Tetori Group) of central Japan. Journal of Vertebrate Paleontology 36. e1112289, 16 pp. doi: 10.1080/02724634.2016.1112289CrossRefGoogle Scholar
Matsuoka, H and Setoguchi, T (2000) Significance of Chinese tritylodontids (Synapsida, Cynodontia) for the systematic study of Japanese materials from the Lower Cretaceous Kuwajima Formation, Tetori Group of Shiramine, Ishikawa, Japan. Asian Paleoprimatology 1, 161–76.Google Scholar
Metcalf, SJ, Vaughan, RF, Benton, MJ, Cole, J, Simms, MJ and Dartnall, DL (1992) A new Bathonian (Middle Jurassic) microvertebrate site, within the Chipping Norton Limestone Formation at Hornsleaslow Quarry, Gloucestershire. Proceedings of the Geologists’ Association 103, 321–42. doi: 10.1080/02724634.2017.1363767CrossRefGoogle Scholar
Miguel, R, Gallo, V and Morrone, JJ (2014) Distributional pattern of Mawsoniidae (Sarcopterygii: Actinistia). Anais da Academia Brasileira de Ciências 86, 159–70. doi: 10.1590/0001-3765201420130035CrossRefGoogle Scholar
Mojon, PO, Haddoumi, H and Charrière, A (2009) Nouvelles données sur les Charophytes et Ostracodes du Jurassique moyen-supérieur de l’Atlas marocain. Carnets de Géologie, Brest, Mémoire 2009/03 , 1–39. doi: 10.4267/2042/29781CrossRefGoogle Scholar
Monbaron, M (1988) Un serpent de mer: le problème de la datation des ‘Couches Rouges’ du Haut Atlas marocain. Le point de la situation. Actes de la société jurassienne d’Émulation, 73–92.Google Scholar
Moody, RT and Sutcliffe, PJC (1991) The Cretaceous deposits of the Iullemmeden Basin of Niger, central West Africa. Cretaceous Research 12, 137–57. doi: 10.1016/S0195-6671(05)80021-7CrossRefGoogle Scholar
Nessov, LA (1984) Pterosaurs and birds of the Late Cretaceous of Central Asia. Paläontologische Zeitschrift 1, 4757.Google Scholar
Norell, MA and Makovicky, PJ (2004) Dromaeosauridae. In The Dinosauria. 2nd edition (eds Weishampel, DB, Dodson, Pand Osmólska, H), pp. 196209. Berkeley: University of California Press.CrossRefGoogle Scholar
Norman, DB, Sues, H-D, Witmer, LM and Coria, RA (2004) Basal Ornithopoda. In The Dinosauria. 2nd edition (eds Weishampel, DB, Dodson, Pand Osmólska, H), pp. 393412. Berkeley: University of California Press.CrossRefGoogle Scholar
Ostrom, JH (1976) Archaeopteryx and the origin of birds. Biological Journal of the Linnean Society 8, 91182. doi: 10.1111/j.1095-8312.1976.tb00244.xCrossRefGoogle Scholar
Paleobiology Database Contributors (2019) PaleoBioDB: The Paleobiology Database. University of Wisconsin at Madison. Available at https://www.paleobiodb.org/ (accessed 8 March 2019).Google Scholar
Patterson, C (1993) Osteichthyes: Teleostei. In The Fossil Record 2 (ed. Benton, MJ), pp. 622–56. London: Chapman and Hall.Google Scholar
Pierce, SE and Benton, MJ (2006) Pelagosaurus typus Bronn, 1841 (Mesoeucrocodylia: Thalattosuchia) from the Upper Lias (Toarcian, Lower Jurassic) of Somerset, England. Journal of Vertebrate Paleontology 26, 621–35.CrossRefGoogle Scholar
Prasad, GVR and Manhas, BK (2002) Triconodont mammals from the Jurassic Kota Formation of India. Geodiversitas 24, 445–64.Google Scholar
Prasad, GVR and Rage, J-C (1991) A discoglossid frog in the latest Cretaceous (Maastrichtian) of India: further evidence for a terrestrial route between India and Laurasia in the latest Cretaceous. Comptes Rendus de l’Académie des Sciences de Paris Série II 313, 273–8.Google Scholar
Rauhut, OWM (2000) The dinosaur faun from the Guimarota mine. In Guimarota: A Jurassic Ecosystem (eds Martin, Tand Krebs, B), pp. 7582. Munich: Verlag Dr. Friedrich Pfeil.Google Scholar
Rauhut, OWM (2001) Herbivorous dinosaurs from the Late Jurassic (Kimmeridgian) of Guimarota, Portugal. Proceedings of the Geologists’ Association 112, 275–83. doi: 10.1016/S0016-7878(01)80007-9CrossRefGoogle Scholar
Rauhut, OWM and López-Arbarello, A (2009) Considerations on the age of the Tiouaren Formation (Iullemmeden Basin, Niger, Africa): implications for Gondwanan Mesozoic terrestrial vertebrate faunas. Palaeogeography, Palaeoclimatology, Palaeoecology 271, 259–67. doi: 10.1016/j.palaeo.2008.10.019CrossRefGoogle Scholar
Rees, J and Underwood, CJ (2002) The status of the shark genus Lissodus Brough 1935, and the position of nominal Lissodus species within the Hybodontoidea (Selachii). Journal of Vertebrate Paleontology 22, 471–9. doi: 10.1671/0272-4634(2002)022[0471:TSOTSG]2.0.CO;2CrossRefGoogle Scholar
Rees, J and Underwood, CJ (2008) Hybondont sharks of the English Bathonian and Callovian (Middle Jurassic). Palaeontology 51, 117–47. doi: 10.1111/j.1475-4983.2007.00737.xCrossRefGoogle Scholar
Richter, A (1994) Lacertilia aus der Unteren Kreide von Una und Galve (Spanien) und Anoual (Marokko). Berliner Geowissenschaftliche Abhandlungen Reihe E 14, 1147.Google Scholar
Richter, A, Knötschke, N, Kosma, R, Sobral, G and Wings, O (2013) The first Mesozoic lizard from northern Germany (Paramacellodidae, Late Jurassic, Langenberg Quarry) and its taphonomy. Journal of Vertebrate Paleontology, Program and Abstracts 2013, 198.Google Scholar
Rogers, RR and Brady, ME (2010) Origins of microfossil bonebeds: insights from the Upper Cretaceous Judith River Formation of north-central Montana. Palaeobiology 36, 80112. doi: 10.1666/0094-8373-36.1.80CrossRefGoogle Scholar
Sankey, JT (2008) Vertebrate paleoecology from microsites, Talley Mountain, Upper Aguja Formation (Late Cretaceous), Big Bend National Park, Texas, USA. In Vertebrate Microfossil assemblages: Their Role in Paleocology and Paleobiogeography (eds Sankey, JTand Baszio, S), pp. 6177. Bloomington: Indiana University Press.Google Scholar
Schudack, M (2000) Geological setting and dating of the Guimarota beds. In Guimarota: A Jurassic Ecosystem (eds Martin, T and Krebs, B), pp. 21–6. Munich: Verlag Dr. Friedrich Pfeil.Google Scholar
Schwarz, D (2002) A new species of Goniopholis from the Upper Jurassic of Portugal. Paleontology 45, 185208. doi: 10.1111/1475-4983.00233CrossRefGoogle Scholar
Schwarz, D, Raddatz, M and Wings, O (2017) Knoetschkesuchus langenbergensis gen. nov. sp. nov., a new atoposaurid crocodyliform from the Upper Jurassic Langenberg Quarry (Lower Saxony, northwestern Germany), and its relationships to Theriosuchus. PLoS ONE 12, e0160617. doi: 10.1371/journal.pone.0160617CrossRefGoogle Scholar
Schwarz, D and Salisbury, SW (2005) A new species of Theriosuchus (Atoposauridae, Crocodylomorpha) from the Late Jurassic (Kimmeridgian) of Guimarota, Portugal. Geobios 38, 779802. doi: 10.1016/j.geobios.2004.04.005CrossRefGoogle Scholar
Schwarz-Wings, D, Rees, J and Lindgren, J (2009) Lower Cretaceous mesoeucrocodylians from Scandinavia (Denmark and Sweden). Cretaceous Research 30, 1345–55.CrossRefGoogle Scholar
Sereno, PC, Beck, AL, Dutheil, DB, Larsson, HCE, Lyon, GH, Moussa, B, Sadleir, RW, Sidor, CA, Varrichio, DJ, Wilson, GP and Wilson, JA (1999) Cretaceous sauropods from the Sahara and the uneven rate of skeletal evolution among dinosaurs. Science 286, 1342–7. doi: 10.1126/science.286.5443.1342CrossRefGoogle ScholarPubMed
Sereno, PC, Wilson, JA and Conrad, JL (2004) New dinosaurs link southern landmasses in the mid-Cretaceous. Proceedings of the Royal Society B, London 271, 1325–30. doi: 10.1098/rspb.2004.2692CrossRefGoogle ScholarPubMed
Sereno, PC, Wilson, JA, Larsson, HCE, Dutheil, DB and Sues, H-D (1994) Early Cretaceous dinosaurs from the Sahara. Science 266, 267–71. doi: 10.1126/science.266.5183.267CrossRefGoogle ScholarPubMed
Setoguchi, T, Matsuda, M and Matsuoka, H (1999) New discovery of an Early Cretaceous tritylodontid (Reptilia, Therapsida) from Japan and the phylogenetic reconstruction of Tritylodontidae based on the dental characters. In Proceedings of the Seventh Annual Meeting of the Chinese Society of Vertebrate Paleontology (eds Wang, YQand Deng, T), pp. 117214. Beijing: China Ocean Press.Google Scholar
Sezgin, M and Sankur, B (2004) Survey over image tresholding techniques and quatitative performance evaluation. Journal of Electronic Imaging 13, 146–65.Google Scholar
Sigogneau-Russell, D (1989) Découverte du premier Symmétrodonte du continent africain. Comptes Rendus de l’Académie des Sciences de Paris Série II 309, 921–6.Google Scholar
Sigogneau-Russell, D (1991a) Nouveaux Mammifères thériens du Crétacé inférieur du Maroc. Comptes Rendus de l’Académie des Sciences de Paris Série II 313, 279–85.Google Scholar
Sigogneau-Russell, D (1991b) First evidence of Multituberculata (Mammalia) in the Mesozoic of Africa. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 2, 119–25.CrossRefGoogle Scholar
Sigogneau-Russell, D (1991c) Découverte du premier mammifère tribosphénique du Mésozoïque africain. Comptes Rendus de l’Académie des Sciences de Paris Série II 313, 1635–40.Google Scholar
Sigogneau-Russell, D (1992) Hypomylos phelizoni nov. gen. nov. sp., une étape précoce de l’évolution de la molaire tribosphénique (Crétacé basal du Maroc). Geobios 25, 389–93. doi: 10.1016/0016-6995(92)80011-2CrossRefGoogle Scholar
Sigogneau-Russell, D (1995a) Further data and reflexions on the tribosphenid mammals (Tribotheria) from the Early Cretaceous of Morocco. Bulletin du Muséum national d’Histoire naturelle de Paris, 4e série, section C 16, 291312.Google Scholar
Sigogneau-Russell, D (1995b) Two possibly aquatic triconodont mammals from the Early Cretaceous of Morocco. Acta Palaeontologica Polonica 40, 149–62.Google Scholar
Sigogneau-Russell, D (1999) Réévaluation des Peramura (Mammalia, Cladotheria) sur la base de nouveaux spécimens du Crétacé inférieur d’Angleterre et du Maroc. Geodiversitas 21, 93127.Google Scholar
Sigogneau-Russell, D (2003) Diversity of triconodont mammals from the Early Cretaceous of North Africa: affinities of the amphilestids. Palaeovertebrata 32, 2755.Google Scholar
Sigogneau-Russell, D and Ensom, PC (1994) Découverte, dans le groupe de Purbeck (Berriasien, Angleterre) du plus ancien témoignage de l’existence de mammifère tribosphéniques. Comptes Rendus de l’Académie des Sciences de Paris, Série II 319, 833–8.Google Scholar
Sigogneau-Russell, D and Ensom, PC (1998). Thereuodon (Theria, Symmetrodonta) from the Lower Cretaceous of Africa and Europe, and a brief review of symmetrodonts. Cretaceous Research 19, 445–70. doi: 10.1006/cres.1998.0115CrossRefGoogle Scholar
Sigogneau-Russell, D, Evans, SE, Levine, JF and Russell, DA (1998) The Early Cretaceous microvertebrate locality of Anoual, Morocco: a glimpse at the small vertebrate assemblages of Africa. In Lower and Middle Cretaceous Terrestrial Ecosystems (eds Lucas, SG, Kirkland, JIand Estep, JW), pp. 177–82. New Mexico Museum of Natural History and Science no. 14.Google Scholar
Sigogneau-Russell, D, Monbaron, M and de Kaenel, E (1990) Nouvelles données sur le gisement à Mammifères mésozoïques du Haut-Atlas marocain. Geobios 23, 461–83. doi: 10.1016/S0016-6995(06)80272-XCrossRefGoogle Scholar
Sigogneau-Russell, D, Monbaron, M and Russell, DE (1988) Découverte de mammifères dans le Mésozoïque moyen d'Afrique. Comptes rendus de l'Académie des Sciences de Paris Série II 307, 1045–50.Google Scholar
Simpson, GG (1926) Mesozoic Mammalia. V. Dromatherium and Microconodon. American Journal of Science 12, 87108. doi: 10.2475/ajs.s5-12.68.87CrossRefGoogle Scholar
Skutschas, PP (2016) A new crown-group salamander from the Middle Jurassic of Western Siberia, Russia. Palaeobiodiversity and Palaeoenvironments 96, 41–8. doi: 10.1007/s12549-015-0216-xCrossRefGoogle Scholar
Skutschas, PP, Kolchanov, VV, Averianov, AO, Martin, T, Schellhorn, R, Kolosov, PN and Vitenko, DD (2018) A new relict stem-group salamander from the Early Cretaceous of Yakutia, Russia. Acta Palaeontologica Polonica 63, 519–25. doi: 10.4202/app.00498.2018CrossRefGoogle Scholar
Soto, M and Perea, D (2010) Late Jurassic lungfishes (Dipnoi) from Uruguay, with comments on the systematics of Gondwanan ceratodontiforms. Journal of Vertebrate Paleontology 30, 1049–58. doi: 10.1080/02724634.2010.483540CrossRefGoogle Scholar
Stampfli, GM and Borel, GD (2002) A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrones. Earth and Planetary Science Letters 196, 1733. doi: 10.1016/S0012-821X(01)00588-XCrossRefGoogle Scholar
Sues, HD (2001) On Microconodon, a Late Triassic cynodont from the Newark supergroup of eastern North America. Bulletin of the Museum of Comparative Zoology 156, 3748.Google Scholar
Sues, HD, Olsen, PE, Kroehler, PA (1994) Small tetrapods from the Upper Triassic of the Richmond basin (Newark Supergroup), Virginia. In In the Shadow of the Dinosaurs: Early Mesozoic Tetrapods (eds Fraser, NCand Sues, HD), pp. 161–70. Cambridge: Cambridge University Press.Google Scholar
Sulej, T, Niedźwiedzki, G, Tałanda, M, Dróżdż, D, Hara, E (2018) A new early Late Triassic non-mammaliaform eucynodont from Poland. Historical Biology, published online 5 June 2018, 13 pp. doi: 10.1080/08912963.2018.1471477CrossRefGoogle Scholar
Sweetman, SC (2006) A gobiconodontid (Mammalia, Eutriconodonta) from the Early Cretaceous (Barremian) Wessex Formation of the Isle of Wight, southern Britain. Palaeontology, 49, 889–97. doi: 10.1111/j.1475-4983.2006.00564.xCrossRefGoogle Scholar
Sweetman, SC (2016) A comparison of Barremian–early Aptian vertebrate assemblages from the Jehol Group, north-east China and the Wealden Group, southern Britain: the value of microvertebrate studies in adverse preservational settings. Palaeobiodiversity and Palaeoenvironments 96, 149–67. doi: 10.1007/s12549-015-0217-9CrossRefGoogle Scholar
Sweetman, SC and Martill, DM (2010) Pterosaurs of the Wessex Formation (Early Cretaceous, Barremian) of the Isle of Wight, southern England: a review with new data. Journal of Iberian Geology 36, 225–42.CrossRefGoogle Scholar
Swennen, C and Yu, T (2004) Notes on feeding structures of the black-faced spoonbill Platalea minor. Ornithological Science 3, 119–24. doi: 10.2326/osj.3.119CrossRefGoogle Scholar
Taquet, P (1976) Géologie et Paléontologie du Gisement de Gadoufaoua (Aptien du Niger). Paris: Cahiers de Paléontologie, Éditions du Centre National de la Recherche Scientifique, 247 pp.Google Scholar
Tatarinov, LP and Mashchenko, EN (1999) A find of an aberrant tritylodont (Reptilia, Cynodontia) in the Lower Cretaceous of the Kemerovo region. Paleontologicheskii Zhurnal 4, 91–2.Google Scholar
Tennant, JP and Mannion, PD (2014) Revision of the Late Jurassic crocodyliform Alligatorellus, and evidence for allopatric speciation driving high diversity in western European atoposaurids. PeerJ 2:e599, 37 pp. doi: 10.7717/peerj.599CrossRefGoogle ScholarPubMed
Tennant, JP, Mannion, PD and Upchurch, P (2016) Evolutionary relationships and systematics of Atoposauridae (Crocodylomorpha: Neosuchia): implications for the rise of Eusuchia. Zoological Journal of the Linnean Society 177, 854936. doi: 10.1111/zoj.12400CrossRefGoogle Scholar
Tennant, JP, Mannion, PD, Upchurch, P, Sutton, MD and Price, GP (2016) Biotic and environmental dynamics through the Late Jurassic–Early Cretaceous transition: evidence for protracted faunal and ecological turnover. Biological Reviews 92, 776814. doi: 10.1111/brv.12255CrossRefGoogle ScholarPubMed
Thies, D (1995) Placoid scales (Chondrichthyes: Elasmobranchii) from the Late Jurassic (Kimmeridgian) of northern Germany. Journal of Vertebrate Paleontology 15, 463–81. doi: 10.1080/02724634.1995.10011242CrossRefGoogle Scholar
Thulborn, RA (1973) Teeth of ornithischian dinosaurs from the Upper Jurassic of Portugal, with description of a hypsilophodontid (Phyllodon henkelli gen. et sp. nov.) from the Guimarota lignite. Memória dos Serviços Geológicos de Portugal 22, 89134.Google Scholar
Unwin, DM (1988) New pterosaurs from Brazil. Nature 332, 398–9.CrossRefGoogle Scholar
Unwin, DM (2005) The Pterosaurs: From Deep Time. New York: Pi Press, 352 pp.Google Scholar
Vallone, ER, Vezzosi, RI and Cione, AL (2017) First fossil fishes (Teleostei, Siluriformes) from the Late Pleistocene of Santa Fe Province, Argentina. Alcheringa 41, 369–77. doi: 10.1080/03115518.2017.1288828CrossRefGoogle Scholar
Veldmeijer, AJ, Signore, M and Bucci, E (2006) Predator-prey interaction of Brazilian Cretaceous toothed pterosaurs: a case example. In Predation in Organisms: A Distinct Phenomenon (ed. Elewa, AMT), pp. 295308. Berlin: Springer-Verlag.Google Scholar
Vignaud, P (1997) La moprhologie dentaire des Thalattosuchia (Crocodylia, Mesosuchia). Palaeovertebrata 26, 3559.Google Scholar
Vrielynck, B, Dercourt, J and Cottereau, N (1995) The Tethys: an ocean broken by seuils lithospheriques. In The Tethys Ocean, Vol. 8: The Ocean Basins and Margins (eds Naim, AEM, Ricou, L-E, Vrielynck, Band Dercourt, J), pp. 495511. New York: Plenum Press.CrossRefGoogle Scholar
Vullo, R (2007) Les vertébrés du Crétacé supérieur des Charentes (Sud-Ouest de la France): biodiversité, taphonomie, paléoécologie et paléobiogéographie. Mémoires de Géosciences Rennes 125, 1302.Google Scholar
Vullo, R, Abit, D, Ballèvre, M, Billon-Bruyat, J-P, Bourgeais, R, Buffetaut, E, Daviero-Gomez, V, Garcia, G, Gomez, B, Mazin, J-M, Morel, S, Néraudeau, D, Pouech, J, Rage, J-C, Schnyder, J and Tong, H (2014) Palaeontology of the Purbeck-type (Tithonian, Late Jurassic) bonebeds of Chassiron (Oléron Island, western France). Comptes Rendus Palevol 13, 421–41. doi: 10.1016/j.crpv.2014.03.003CrossRefGoogle Scholar
Vullo, R and Courville, P (2014) Fish remains (Elasmobranchii, Actinopterygii) from the Late Cretaceous of the Benue Trough, Nigeria. Journal of African Earth Sciences 97, 194206. doi: 10.1016/j.jafrearsci.2014.04.016CrossRefGoogle Scholar
Wenz, S and Poyato-Ariza, FJ (1994) Les Actinoptérygiens juveniles du Crétacé inférieur du Montsec et de Las Hoyas (Espagne). Geobios 27, 203–12. doi: 10.1016/S0016-6995(94)80035-9CrossRefGoogle Scholar
Wiechmann, MF (2000) The albanerpetontids from the Guimarota mine. In Guimarota: A Jurassic Ecosystem (eds Martin, Tand Krebs, B), pp. 5154. Munich: Verlag Dr. Friedrich Pfeil.Google Scholar
Wings, O (2015) The Langenberg Quarry near Goslar: unique window into a terrestrial Late Jurassic ecosystem in Northern Germany. In Abstracts of the 12th Symposium of Mesozoic Terrestrial Ecosystems, Shenyang, China, 16–20 August 2015 (eds Zhang, Y, Wu, SZand Sun, G), pp. 99100.Google Scholar
Wings, O and Sander, PM (2012) The Late Jurassic vertebrate assemblage of the Langenberg Quarry, Oker, Northern Germany. Fundamental 20, 281–4.Google Scholar
Witton, MP (2013) Pterosaurs: Natural History, Evolution, Anatomy. Princeton: Princeton University Press, 304 pp.CrossRefGoogle Scholar
Witton, MP (2018) Pterosaurs in Mesozoic food webs: a review of fossil evidence. In New Perspectives on Pterosaur Palaeobiology (eds Hone, DWE, Witton, MP and Martill, DM), pp. 723. Geological Society of London, Special Publication no. 455.CrossRefGoogle Scholar
Xu, GH, Zao, LJ and Coates, MI (2014) The oldest ionoscopiform from China sheds new light on the early evolution of halecomorph fishes. Biology Letters 10, 2014.0204. doi: 10.1098/rsbl.2014.0204CrossRefGoogle ScholarPubMed
Young, MT, Tennant, JP, Brusatte, SL, Challands, TJ, Fraser, NC, Clark, ND and Ross, DA (2016) The first definitive Middle Jurassic atoposaurid (Crocodylomorpha, Neosuchia), and a discussion on the genus Theriosuchus. Zoological journal of the Linnean Society 176, 443–62. doi: 10.1111/zoj.12315CrossRefGoogle Scholar
Zhou, Z (2004) The origin and early evolution of birds: discoveries, disputes, and perspectives from fossil evidence. Natuwissenschaften 91, 455–71. doi: 10.1007/s00114-004-0570-4CrossRefGoogle ScholarPubMed
Zinke, J (1998) Small theropod teeth from the Upper Jurassic coal mine of Guimarota (Portugal). Paläontologische Zeitschrift 72, 179–89.CrossRefGoogle Scholar
Zouhri, S, Sigogneau-Russell, D and Haddoumi, H (2017) Microvertébrés de la transition Jurassique-Crétacé du synclinal d’Anoual (Haut Atlas Oriental), Maroc. In Paléontologie des Vertébrés du Maroc: état des connaissances (ed. Zouhri, S), pp. 285306. Mémoires de la Société géologique de France 180.Google Scholar
Supplementary material: File

Lasseron et al. supplementary material

Tables S1-S3

Download Lasseron et al. supplementary material(File)
File 31.1 KB