Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-22T19:25:20.407Z Has data issue: false hasContentIssue false

Mid-Cretaceous ductile deformation on the Eastern Palmer Land Shear Zone, Antarctica, and implications for timing of Mesozoic terrane collision

Published online by Cambridge University Press:  28 October 2002

ALAN P. M. VAUGHAN
Affiliation:
British Antarctic Survey, High Cross, Madingley Rd, Cambridge CB3 0ET, UK
SIMON P. KELLEY
Affiliation:
Department of Earth Sciences, Open University, Walton Hall, Milton Keynes MK7 6AA, UK
BRYAN C. STOREY
Affiliation:
Gateway Antarctica, University of Canterbury, Private Bag 4800, Christchurch, New Zealand

Abstract

Ar–Ar dating of high-strain ductile mylonites of the Eastern Palmer Land Shear Zone in the southern Antarctic Peninsula indicates that reverse movement on the shear zone occurred in late Early Cretaceous times (Albian), and not latest Jurassic times as previously supposed. The Eastern Palmer Land Shear Zone forms a major tectonic boundary, separating suspect arc terranes from rocks of Gondwana continental affinity. The dated mylonites are developed in Lower Jurassic plutonic rocks at Mount Sullivan, eastern Palmer Land, and form part of a zone of ductile reverse deformation up to 25 km wide. Biotite from a fine-grained mafic mylonite yields an Ar–Ar cooling age of 102.8±3.3 Ma. Movement of this age on the Eastern Palmer Land Shear Zone is coeval with circum-Pacific deformation, possibly related to a mantle superplume event, and provides support for allochthonous-terrane models for the Antarctic Peninsula with accretion in post-Early Cretaceous times.

Type
Research Article
Copyright
© 2002 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)