Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T14:26:33.008Z Has data issue: false hasContentIssue false

Marine event beds and recolonization surfaces as revealed by trace fossil analysis

Published online by Cambridge University Press:  01 May 2009

R. W. Frey
Affiliation:
Department of Geology, University of Georgia, Athens, Georgia 30602, U.S.A.
R. Gold Ring
Affiliation:
Postgraduate Research Institute for Sedimentology, University of Reading, Whiteknights, Reading RG6 2AB, U.K.

Abstract

Turbidites and tempestites exhibit characteristic distributions of trace fossils. To gain maximum advantage of the sedimentological and palaeoecological significance of these traces, an attempt should be made to relate each trace to the associated colonization surface. This approach allows traces initiated at the normal top of an event bed to be distinguished from traces that subsequently passed into the bed from a higher colonization level or were initiated on the eroded surface of the bed.

Type
Articles
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ager, D. V. & Wallace, P. 1966. Easter field meeting in the Boulonnais, France. Proceedings of the Geologists’ Association 77, 419–35.CrossRefGoogle Scholar
Aigner, T. 1985. Storm Depositional Systems: Dynamic Stratigraphy in Modern and Ancient Shallow-Marine Sequences, 174 pp. Lecture Notes in Earth Sciences. Springer.Google Scholar
Aigner, T. & Reineck, H.-E. 1982. Proximality trends in modern storm sands from the Helgoland Bight (North Sea) and their implications for basin analysis. Senckenbergiana maritima 14, 183215.Google Scholar
Allen, J. R. L. Sedimentary Structures: Their Character and Physical Basis, 593 pp. Elsevier.Google Scholar
Allen, P. A. & Underhill, J. R. 1989. Swaley cross-stratification produced by unidirectional flows, Bencliff Grit (Upper Jurassic), Dorset, U.K. Journal of the Geological Society, London 146, 241–52.CrossRefGoogle Scholar
Benton, M. J. & Gray, D. J. 1981. Lower Silurian distal shelf storm-induced turbidites in the Welsh Borders: sediments, toolmarks and trace fossils. Journal of the Geological Society, London 138, 675–94.CrossRefGoogle Scholar
Bourgeois, J. 1984. Utilization of physical and biogenic sedimentary structures to interpret the nature of deposition in shallow seas. In Marine Geology and Physical Processes of the Yellolw Sea, Proceedings of Korea–U.S. Seminar and Workshop (ed. Park, Y. A., Pilkey, O. H. and Kim, S. W.), pp. 425. Korea Institute of Energy and Resources, Seoul.Google Scholar
Brenchley, P. J. 1985. Storm influenced sandstone beds. Modern Geology 9, 369–96.Google Scholar
Bromley, R. G. 1990. Trace Fossils: Biology and Taplionomy, 280 pp. Unwin Hyman.Google Scholar
Bromley, R. O. & Asgaard, U. 1991. Ichnofacies: a mixture of taphofacies and biofacies. Lethaia 24, 153–63.Google Scholar
Butman, A. C. 1987. Larval settlement of soft-sediment invertebrates: the spatial scales of pattern explained by active habitat selection and the emerging role of hydrodynamic processes. Oceanography and Marine Biology, Annual Review 25, 113–65.Google Scholar
Cornish, F. G. 1986. The trace-fossil Diplocraterion: evidence of animal–sediment interactions in Cambrian tidal deposits. Palaios 1, 478–91.Google Scholar
Crimes, T. P. 1977. Trace fossils of an Eocene deep-sea fan, Northern Spain. In Trace Fossils 2 (ed. Crimes, T. P. and Harper, J. C.), pp. 7190. Geological Journal, Special Issue 3, Seel House Press.Google Scholar
Crimes, T. P., Goldring, R., Homewood, P., Van Stuuvenberg, J. & Winkler, W. 1981. Trace fossil assemblages of deep-sea fan deposits, Gurnigel and Schlieren flysch (Cretaceous–Eocene), Switzerland. Eclogae geologica Helvetica 74, 953–95.Google Scholar
Donaldson, D. & Simpson, S. 1962. Chomatichnus, a new ichnogenus and other trace-fossils of Wegber Quarry. Liverpool & Manchester Geological Journal 3, 7381.Google Scholar
Duke, W. L., Arnott, R. W. C. & Cheel, R. J. 1991. Shelf sandstones and hummocky cross-stratification: new insights on a stormy debate. Geology 19, 625–8.2.3.CO;2>CrossRefGoogle Scholar
Eagar, R. M. C., Baines, J. G., Collinson, J. D., Hardy, P. O., Okolo, S. A. & Pollard, J. E. 1985. Trace fossil assemblages and their occurrence in Silesian (midCarboniferous) deltaic sediments of the Central Pennine Basin, England. In Biogenic Structures: Their Use in Interpreting Depositional Environments (ed. Curran, H. A.), pp. 99149. Society of Economic Paleontologists and Mineralogists, Special Publication no. 35.CrossRefGoogle Scholar
Enders, H. E. 1908. Observations in the formation and enlargement of the tubes of the marine annelid (Chaetopterus variopedatus). Proceedings of the Indiana Academy of Science 1907, 128–35.Google Scholar
Enders, H. E. 1909. A study of the life-history and habits of Chaetopterus variopedatus, Renier et Claparéde. Journal of Morphology 20, 479532.Google Scholar
Fager, E. W. 1964. Marine sediments: effects of a tube-building polychaete. Science 143 (3604), 356–59.CrossRefGoogle ScholarPubMed
Frey, R. W. 1968. The lebensspuren of some common marine invertebrates near Beaufort, North Carolina. I. Pelecypod burrows. Journal of Paleontology 42, 570–74.Google Scholar
Frey, R. W. 1990. Trace fossils and hummocky cross-stratification, Upper Cretaceous of Utah. Palaios 5, 203–18.Google Scholar
Frey, R. W. & Döries, J. 1988. Fair-and foul-weather shell accumulations on a Georgia beach. Palaios 3, 561–76.CrossRefGoogle Scholar
Frey, R. W. & Howard, J. D. 1990. Trace fossils and depositional sequences in a elastic shelf setting, Upper Cretaceous of Utah. Journal of Paleontology 64, 803–20.CrossRefGoogle Scholar
Frey, R. W., Howard, J. D. & Pryor, W. A. 1978. Ophiomorpha: its morphologic, taxonomic, and environmental significance. Palaeogeography, Palaeoclimatology, Palaeoecology 23, 199229.CrossRefGoogle Scholar
Frey, R. W. & Seilacher, A. 1980. Uniformity in marine invertebrate ichnology. Lethaia 13, 183207.Google Scholar
Frey, R. W. & Wheatcroft, R. W. 1989. Organism–substrate relations and their impact on sedimentary petrology. Journal of Geological Education 37, 261–79.Google Scholar
Gall, J.-C. 1971. Faunes et paysages du Grés à Voltzia du nord des Vosges: essai paléoécologique sur Ic Buntsandstein supérieur. Mémoires du Servicée de Ia carte Géologique d'Alsace et de Lorraine 34, 318 pp.Google Scholar
Goldring, R. 1964. Trace-fossils and the sedimentary surface in shallow-water marine sediments. In Deltaic and Shallow Marine Deposits (ed. Van Straaten, L. J. M. U.), pp. 136–43. Elsevier.Google Scholar
Goldring, R. 1966. Sandstones of sublittoral (neritic) facies. Nature 210, 1248–49.Google Scholar
Goldring, R. 1971. Shallow-water sedimentation. Memoir of the Geological Society of London 5, 80 pp.Google Scholar
Goloring, R. 1985. The formation of the trace fossil Cruziana. Geological Magazine 122, 6572.CrossRefGoogle Scholar
Goldring, R. 1991. Fossils in the Field, Information Potential and Analysis, 210 pp. Longman.Google Scholar
Goldring, R. & Aigner, T. 1982. Scour and fill: the significance of event separation. In Cyclic and Event Stratification (ed. Einsele, G. and Seilacher, A.), pp. 354–82. Springer.Google Scholar
Goldring, R. & Bridges, P. D. 1973. Sublittoral sheet sandstones. Journal of Sedimentary Petrology 43, 736–47.Google Scholar
Goldring, R. & Seilacher, A. 1971. Limulid undertracks and their sedimentological implications. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 37, 422–42.Google Scholar
Gruszczynski, M. 1986. Hardgrounds and ecological succession in the light of early diagenesis (Jurassic, Holy Cross Mts, Poland). Acta Palaeontologica Polonica 31, 163212.Google Scholar
Hallam, A. & Swett, K. 1966. Trace fossils from the Lower Cambrian Pipe Rock of the north-west High-lands. Scottish Journal of Geology 2, 101–6.Google Scholar
Henderson, S. W. & Frey, R. W. 1986. Taphonomic redistribution of mollusk shells in a tidal inlet channel, Sapelo Island, Georgia. Palaios 1, 316.CrossRefGoogle Scholar
Hertweck, G. 1970. The animal community of a muddy environment and the development of biofacies as affected by the life cycle of the characteristic species. In Trace Fossils (ed. Crimes, T. P. and Harper, J. C.), pp. 235–42. Geological Journal, Special Issue 3.Google Scholar
Howard, J. C. 1972. Trace fossils as criteria for recognizing shorelines in stratigraphic record. In Recognition of Ancient Sedimentary Environments (ed. Rigby, J. K. and Hamblin, W. K.), pp. 215–25. Society of Economic Paleontologists and Mineralogists, Special Publication no. 16.Google Scholar
Howard, J. D. 1978. Sedimentology and trace fossils. In Trace Fossil Concepts (ed. Basan, P. B.), pp. 1347. Society of Economic Palaeontologists and Mineralogists, Short Course Notes, 5.Google Scholar
Leckie, D. A. & Krystinik, L. F. 1989. Is there evidence for geostrophic currents preserved in the sedimentary record of inner to middle shelf deposits. Journal of Sedimentary Petrology 59, 862–70.Google Scholar
Leckie, D. A. & Krystinik, L. F. 1990. Reply to above. Journal of Sedimentary Petrology 60, 636–7.Google Scholar
Manning, R. B. & Felder, D. L. 1986. The status of the callianassid genus Callichirus Stimpson, 1866 (Crustacea: Decapoda: Thalassinidea). Proceedings of the Biological Society of Washington 99, 437–43.Google Scholar
Martinsson, A. 1970. Toponomy of trace fossils. In Trace Fossils (ed. Crimes, T. P. and Harper, J. C.), pp. 323–30. Geological Journal, Special Issue no. 3.Google Scholar
McCall, P. L. 1977. Community patterns and adaptive strategies of the infaunal benthos of Long Island Sound. Journal of Marine Research 35, 221–66.Google Scholar
McKie, T. 1989. Barrier island to tidal shelf transition in the early Cambrian Eriboll Sandstones. Scottish Journal of Geology 25, 239–96.Google Scholar
Myers, A. C. 1972. Tube-worm-sediment relationships of Diopatra cuprea (Polychaeta: Onuphidae). Marine Biology 17, 350–56.Google Scholar
Palmer, M. A. 1988. Dispersal of marine meiofauna: a review and conceptual model explaining passive transport and active emergence with implications for recruitment. Marine Ecology Progress Series 48, 8191.Google Scholar
Pedersen, G. K. & Surlyk, F. 1983. The Fur Formation, a late Paleocene ash-bearing diatomite from northern Denmark. Bulletin of the Geological Society of Denmark 32, 4365.Google Scholar
Pemberton, S. G. & Frey, R. W. 1984. Ichnology of storm-influenced shallow marine sequence: Cardium Formation (Upper Cretaceous) at Seebe, Alberta. In The Mesozoic of Middle North America (ed. Stott, D. F. and Glass, D. J.), pp. 281304. Canadian Society of Petroleum Geologists, Memoir 9.Google Scholar
Pemberton, S. O., Frey, R. W. & Bromley, R. G. 1988. The ichnotaxonomy of Conichnus and other plug-shaped ichnofossils. Canadian Journal of Earth Sciences 25, 866–92.Google Scholar
Rees, E. I. S., Njcholaidou, A. & Laskaridou, P. 1976 The effects of storms on the dynamics of shallow water benthic associations. In Biology of Benthic Organisms (ed. Keegan, B. F., Ceidigh, P. O. and Boaden, P. J. S.), pp. 465–74. Pergamon Press.Google Scholar
Reineck, H.-E. 1958. Wühlbau-Gefüge in Abhängigkeit von Sediment-Umlagerungen. Senckenbergiana lethaea 39, 123.Google Scholar
Reineck, H.-E., Döries, J., Gadow, S. & Hertweck, G. 1968. Sedimentologie, Faunenzonierung und Faziesabfolge vor der Ostküste der inneren Deutschen Bucht. Senckenbergiana lethaea 49, 261309.Google Scholar
Saila, S. B. 1976. Sedimentation and food resources: animal–sediment relationships. In Marine Sediment Transport and Environmental Management (ed. Stanley, D. J. and Swift, D. J. P.), pp. 486–9. Wiley–Interscience Publications.Google Scholar
Savrda, C. E. & Bottjer, D. J. 1986. Trace-fossil model for reconstruction of paleo-oxygenation in bottom waters. Geology 14, 36.Google Scholar
Seilacher, A. 1953. Studien zur Palichnologie. II. Die fossilen Ruhespuren (Cubichnia). Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 98, 87124.Google Scholar
Seilacher, A. 1962. Paleontological studies on turbidite sedimentation and erosion. Journal of Geology 70, 227–34.Google Scholar
Seilacher, A. 1974. Flysch trace fossils: evolution of behavioural diversity in the deep-sea. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 1974, 233–45.Google Scholar
Seilaciher, A. 1977. Pattern preservation of Paleodictyon and related trace fossils. In Trace Fossils 2 (ed. Crimes, T. P. and Harper, J. C.), pp. 289334. Geological Journal, Special Issue no. 9.Google Scholar
Seilacher, A. 1982. Distinctive features of sandy tempestites. In Cyclic and event stratification (ed. Springer, G. and Seilacher, A.), pp. 333–49. Springer.Google Scholar
Seilacher, A. 1990. Aberrations in bivalve evolution related to photo- and chemosymbiosis. Historical Biology 3, 289311.CrossRefGoogle Scholar
Simpson, J. 1987. Mud-dominated storm deposits from a Lower Carboniferous ramp. Geological Journal 22, 191205.Google Scholar
Smith, C. R. & Brumsickle, S. J. 1989. The effects of patch size and substrate isolation on colonization modes and rates in an intertidal sediment. Limnology and Oceanography 34, 1263–77.CrossRefGoogle Scholar
Thistle, D. 1981. Natural physical disturbances and communities of marine soft bottoms. Marine Ecology Progress Series 6, 223–8.Google Scholar
Tyler, P. 1976. Sub-littoral community structure of Oxwich Bay, South Wales in relation to sedimentological, physical oceanographic and biological parameters. In Biology of Benthic Organisms (ed. Keegan, B. F., Ceidigh, P. O. and Boaden, P. J. S.), pp. 559–66. Pergamon Press.Google Scholar
Vossler, S. M. & Pemberton, S. G. 1988. Skolithos in the Upper Cretaceous Cardium Formation: an ichnofossil example of opportunistic ecology. Lethaia 21, 351–62.Google Scholar
Vossler, S. M. & Pemberton, S. G. 1989. Ichnology and paleoecology: offshore siliciclastic deposits in the Cardium Formation (Turonian, Alberta, Canada). Palaeogeography, Palaeoclimatology, Palaeoecology 74, 217–39.Google Scholar
Waage, K. M. 1968. The type Fox Hills Formation, Cretaceous (Maestrichtian), South Dakota. Peabody Museum of Natural History, Yale University, Bulletin 27, 175 pp.Google Scholar
Wanlass, H. R., Tedesco, L. P. & Tyrrell, K. M. 1988. Production of subtidal tubular and surficial tempestites by hurricane Kate, Caicos Platform, British West Indies. Journal of Sedimentary Petrology 58, 739–50.Google Scholar
Webb, J. E., Dörjes, D. J., Gray, J. S., Hessler, R. R., Van Andel, T. H., Werner, F., Wolff, T. & Zulstra, J. J. 1976. Organism–sediment relationships. In The Benihic Boundary Layer (ed. McCave, I. N.), pp. 273–95. New York: Plenum Press.Google Scholar
Wetzel, A. & Aigner, T. 1986. Stratigraphic completeness: tiered trace fossils provide a measuring stick. Geology 14, 234–7.Google Scholar
Wright, A. D. & Benton, M. J. 1987. Trace fossils from Rhaetic shore-face deposits of Staffordshire. Palaeontology 30, 407–28.Google Scholar