Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-23T02:39:20.276Z Has data issue: false hasContentIssue false

Løvehovden fault and Billefjorden rift basin segmentation and development, Spitsbergen, Norway

Published online by Cambridge University Press:  27 July 2010

H. D. MAHER JR*
Affiliation:
Department of Geography and Geology, University of Nebraska at Omaha, Omaha, NE 68182-0199, USA
A. BRAATHEN
Affiliation:
Arctic Geology Department, UNIS, 9171 Longyearbyen, Norway
*
*Author for correspondence: [email protected]

Abstract

The Carboniferous Billefjorden rift basin is a well-known example of a suite of Carboniferous basins on the Barents Shelf and NE Greenland. The basin has a clastic, carbonate and evaporite fill with complex and disputed stratigraphic relationships, especially regarding the Ebbadalen and Minkinfjellet formations. Geometrically, the basin is considered a simple half-graben. A N–S-trending fault and monocline structure within the northern portion of the basin, the Løvehovden fault, has lithological and thickness differences across it within the Minkinfjellet and possibly Ebbadalen formations. The fault shows W-side-down movement, defining a sub-basin within the larger half-graben. Significant along-strike changes occur. Down-throw to the west is at least 150 metres and possibly 400 metres, as shown by across-fault thickness differences of Ebbadalen and/or Minkinfjellet formations. To the east of the fault, the contact between the Ebbadalen and Minkinfjellet formations is a disconformity with significant local relief, and is interpreted to represent exposure from footwall uplift, and associated near- or at-surface solution, producing basal stratiform breccias. A similar contact is not exposed west of the fault. Monoclinal deformation and thickening of the younger Wordiekammen Formation above and across the monocline constrain a later movement component. Kinematic data and the structural style clearly indicate the Løvehovden fault is a normal fault with associated tri-shear zone development, consistent with the regional Carboniferous rift setting. Earlier interpretations describe the Løvehovden fault and monocline as Tertiary contractional features. In contrast, our work advocates that they are an important architectural basin element, defining a sub-basin within the Billeforden Trough during Minkinfjellet Formation deposition, with insignificant, if any, Tertiary reactivation. The Løvehovden fault is aligned with and represents the southern termination of the Lemströmfjellet fault to the north. Thus, the Billefjorden basin changes from a narrow graben to a broader half-graben to the south. These along-strike changes have important implications for the stratigraphic architecture of the basin, and for palaeogeographic reconstructions. These results and application of 3-D models for extension related tri-shear zones may help inform interpretation of other Carboniferous basins on the Barents Shelf.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bergh, S. G., Braathen, A. & Maher, H. D. Jr. 1994. The Lomfjorden fault zone; basement-controlled Carboniferous subsidence and Tertiary contractional reactivation in the Svalbard Foreland, East Spitsbergen. Tectonics and Structural Geology Studies Group of Norwegian Geological Society, Tromso, 1011.Google Scholar
Braathen, A. & Bergh, S. 1995. Kinematics of Tertiary deformation in the basement-involved fold-thrust complex, western Nordenskiøld Land, Svalbard: tectonic implications based on fault-slip data analysis. Tectonophysics 249, 129.CrossRefGoogle Scholar
Buckley, S., Howell, J., Vallet, J., Wheeler, W. & Braathen, A. 2008. Oblique helicopter-mounted lidar combined with multiresolution modelling for the creation of high resolution, wide-area virtual geological outcrops. American Association of Petroleum Geologists Annual Convention Abstracts. San Antonio, Texas.Google Scholar
Cutbill, J. L. & Challinor, A. 1965. Revision of the stratigraphical scheme for the Carboniferous and Permian Rocks of Spitsbergen and Bjornoya. Geological Magazine 102, 418–39.CrossRefGoogle Scholar
Dallmann, W. K. 1993. Notes on the stratigraphy, extent and tectonic implications of the Minkinfjellet Basin, Middle Carboniferous of central Spitsbergen. Polar Research 12, 153–60.CrossRefGoogle Scholar
Dallmann, W. K. 1992. Multiphase tectonic evolution of the Sørkapp-Hornsund mobile zone (Devonian, Carbonierous, Tertiary) Svalbard. Norsk Geologisk Tidsskrift 72, 4966.Google Scholar
Dallmann, W. K. 1999. Upper Paleozoic Lithostratigraphy. In Lithostratigraphic Lexicon of Svalbard (ed. Dallmann, Winfried), pp. 25126. Norsk Polarinstitutt. Tromsø, Gjøvik Trykkeri As.Google Scholar
Dallmann, W. K., Ohta, I., Birjukov, A. S., Karnoušenko, E. P., Sirotkin, A. N. & Piepjohn, K. 2004. Geological map of Svalbard 1:100,000, sheet C7G Dicksonfjorden. Norsk Polarinstitutt Temakart No. 35, 1 sheet, 1:100,000.Google Scholar
Dallmann, W. K., Piepjohn, K. & Blomeir, D. 2004. Geological map of Billefjorden Central Spitsbergen, Svalbard with geological excursion guide. Norsk Polarinstitutt Temakart Nr. 36, 1 sheet, 1:50,000.Google Scholar
Eliassen, A. & Talbot, M. R. 2003 a. Diagenesis of the mid-Carboniferous Minkinfjellet Formation, Central Spitsbergen, Svalbard. Norwegian Journal of Geology 83, 319–31.Google Scholar
Eliassen, A. & Talbot, M. R. 2003 b. Sedimentary facies and depositional history of the mid-Carboniferous Minkinfjellet Formation. Norwegian Journal of Geology 83, 299318.Google Scholar
Finch, E., Hardy, S. & Gawthorpe, R. 2004. Discrete-element modeling of extensional fault-propagation folding above rigid basement fault blocks. Basin Research 16, 489506.CrossRefGoogle Scholar
Gabrielsen, R. H., Kløvan, O. S., Haugsbø, H., Midbøe, P. S., Nøttvedt, A., Rasmussen, E. & Skøtt, P. H. 1992. A structural outline of Forlandsundet Greben, Prins Karls Forland, Svalbard. Norsk Geologisk Tidsskrift 72, 105–20.Google Scholar
Gjelberg, J. G. & Steel, R. J. 1981. An outline of Lower–Middle Carboniferous sedimentation on Svalbard: effects of tectonic, climatic and sea level changes in rift basin sequences. Canadian Society of Petroleum Geologists Memoir 7, 543–62.Google Scholar
Hardy, S. & McClay, K. 1999. Kinematic modeling of extensional fault-propagation folding. Journal of Structural Geology 21, 695702.CrossRefGoogle Scholar
Haremo, P., Andresen, A., Dypvik, H., Nagy, J., Elverhøi, A., Eikeland, T. A. & Johansen, H. 1990. Structural development along the Billefjorden Fault Zone in the area between Kjellstromdalen and Adventdalen/Sassendalen, central Spitsbergen. Polar Research 8, 195216.Google Scholar
Harland, W. B. 1969. Contribution of Spitsbergen to understanding of the tectonic evolution of the North Atlantic region. In North Atlantic Geology and Continental Drift (ed. Kay, M.), pp. 817–51. American Association of Petroleum Geologists, Memoir no. 12.Google Scholar
Harland, W. B. 1997. Chapter 17: Carboniferous–Permian history of Svalbard. In The Geology of Svalbard (ed. Harland, W. B.), pp. 310–39. Geological Society of London, Memoir No. 17. Oxford: Alden Press.Google Scholar
Haszeldine, R. S. 1984. Carboniferous North Atlantic palaeogeography: stratigraphic evidence for rifting, not megashear or subduction. Geological Magazine 121, 443–63.CrossRefGoogle Scholar
Jackson, C. A. L., Gawthorpe, R. L. & Sharp, I. R. 2006. Style and sequence of deformation during extensional fault-propagation folding: examples from the Hammam Faraun and El-Qaa fault blocks, Suez Rift, Egypt. Journal of Structural Geology 28, 519–35.CrossRefGoogle Scholar
Johannessen, E. P. & Steel, R. J. 1992. Mid-Carboniferous extension and rift-infill sequences in the Billefjorden Trough, Svalbard. Norsk Geologisk Tidsskrift 72, 3548.Google Scholar
Khalil, S. M. & McClay, K. R. 2002. Extensional fault-related folding, northwestern Red Sea, Egypt. Journal of Structural Geology 24, 743–62.CrossRefGoogle Scholar
Lonoy, A. 1995. A Mid-Carboniferous, carbonate dominated platform, central Spitsbergen. Norsk Geologisk Tidsskrift 75, 4863.Google Scholar
Maher, H. D. Jr, Braathen, A. & Bælum, K. 2009. Implications of the Petuniabukta syncline for the timing of Billefjorden basin development on Spitsbergen, Norway. Geological Society of America Abstracts with Program 41 (6), 52.Google Scholar
Maher, H. D. Jr & Welbon, A. 1992. Influence of Carboniferous structures on Tertiary tectonism at St. Jonsfjorden and Bellsund, Western Svalbard. Norsk Geologisk Tidsskrift 72, 6775.Google Scholar
Manby, G. M., Lyberis, N., Chorowicz, J. & Thiedig, F. 1994. Post Caledonian tectonics along the Billefjorden fault zone, Svalbard, and implications for the Arctic Region. Geological Society of America Bulletin 105, 201–16.2.3.CO;2>CrossRefGoogle Scholar
McCann, A. J. & Dallmann, W. D. 1996. Reactivation history of the long-lived Billefjorden Fault Zone in north central Spitsbergen, Svalbard. Geological Magazine 133, 6384.CrossRefGoogle Scholar
Mosar, J., Torsvik, T. H. & BAT Team. 2002. Opening the Norwegian and Greenland Seas: plate tectonics in Mid Norway since the Late Permian. In BATLAS Mid Norway plate reconstruction atlas with global and Atlantic perspectives (ed. Eide, E. A.), pp. 4859. Trondheim: Geological Survey of Norway.Google Scholar
Nanfito, A., Maher, H. D. & Braathen, A. 2008. TI: Timing of evaporite deformation and diagenesis along the Billefjorden fault zone of Spitsbergen. Eos Transactions American Geophysical Union, Fall Meeting Supplement, 89 (53), Abstract T21B-1965.Google Scholar
Pickard, N. E., Eilertsen, F., Hanken, N.-M., Johansen, T. A., Lønøy, A., Nakrem, H. A., Nilsson, I., Samuelsberg, T. J. & Somerville, I. D. 1996. Stratigraphic framework of Upper Carboniverous (Moscovian–Kasimovian) strata in Bunsow Land, central Spitsbergen: paleogeographic implications. Norsk Geologisk Tidsskrift 76, 169–85.Google Scholar
Scholz, C. & Contreras, J. 1998. Mechanics of continental rift architecture. Geology 26, 967–70.2.3.CO;2>CrossRefGoogle Scholar
Sharp, I. R., Gawthorpe, R. L., Underhill, J. R. & Gupta, S. 2000. Fault-propagation folding in extensional settings; examples of structural style and synrift sedimentary response from the Suez Rift, Sinai, Egypt. Geological Society of America Bulletin 112, 1877–99.2.0.CO;2>CrossRefGoogle Scholar
Steel, R. & Worsley, D. 1984. Svalbard's post-Caledonian strata – an atlas of sedimentational patterns and palaeogeographic evolution. In Petroleum Geology of the North European Margin (eds Spencer, A. M., Hotter, E., Johnsen, S. O., Mork, A., Nysxther, E., Songstad, P. & Spinnangr, Å.), pp. 109–35. London: Graham & Trotman.CrossRefGoogle Scholar
Stemmerik, L. & Worsley, D. 2005. 30 years on – Arctic Upper Palaeozoic stratigraphy, depositional evolution and hydrocarbon prospectivity. Norwegian Journal of Geology 85, 151–68.Google Scholar
Torsvik, T. H., Lovlie, R. & Sturt, B. 1985. Palaeomagnetic argument of a stationary Spitsbergen relative to the British Isles (Western Europe) since Late Devonian and its bearing on North Atlantic reconstructions. Earth and Planetary Science Letters 75, 278–83.CrossRefGoogle Scholar
Worsley, D. & Aga, O. J. 1986. The Geological History of Svalbard. Den norske stats oljeselskap, 121 pp.Google Scholar
Worsley, D., Agdestein, T., Gjelberg, J. G., Kirkemo, K., Mørk, A., Nilsson, I., Olaussen, S., Steel, R. J. & Stemmerik, L. 2001. The geological evolution of Bjørnøya, Arctic Norway: implications for the Barents Shelf. Norsk Geologisk Tidsskrift 81, 195234.Google Scholar
Ziegler, P. A. 1988. Evolution of the Arctic–North Atlantic and the Western Tethys. American Association of Petroleum Geologists, Memoir no. 43, 198 pp. Tulsa, Oklahoma.CrossRefGoogle Scholar