Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-23T17:30:22.281Z Has data issue: false hasContentIssue false

The Liuyuan complex in the Beishan, NW China: a Carboniferous–Permian ophiolitic fore-arc sliver in the southern Altaids

Published online by Cambridge University Press:  06 October 2011

QIGUI MAO
Affiliation:
Beijing Institute of Geology for Mineral Resources, Beijing 100012, China State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
WENJIAO XIAO*
Affiliation:
State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
BRIAN F. WINDLEY
Affiliation:
Department of Geology, University of Leicester, Leicester LE1 7RH, UK
CHUNMING HAN
Affiliation:
State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
JUNFENG QU
Affiliation:
State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
SONGJIAN AO
Affiliation:
State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
JI'EN ZHANG
Affiliation:
State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
QIANQIAN GUO
Affiliation:
State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
*
Author for correspondence: [email protected]

Abstract

The tectonic history and time of closure of the Palaeo-Asian ocean of the Altaids are issues of lively current debate. To address these issues, this paper presents detailed geological, petrological and geochemical data of the Liuyuan complex (LC) in the Beishan region in NW China, located in the southernmost Altaids, in order to constrain its age, origin and tectonic setting. The LC mainly comprises massive basalts, pillow basalts, basaltic breccias, gabbros and ultramafic rocks together with cherts and tuffs. Most prominent are gabbros and large volumes of basaltic lavas. These mafic rocks have high TiO2 contents, flat rare earth element (REE) patterns and show high-field-strength elements (HFSEs) similar to those of mid-ocean ridge basalts (MORB). The mafic rocks exhibit positive εNd(t) (6.6–9.0) values, representing magmas derived from the mantle. But these basic rocks are also enriched in Th relative to REEs, and are systematically depleted in Nb–Ta–(Ti) relative to REEs. There is also a large range in initial 87Sr/86Sr (0.7037–0.7093). All these variables indicate that mantle-derived magma was contaminated by fluids and/or melts from a subducting lithospheric slab, and formed in a supra-subduction zone (SSZ) setting. A gabbro intruded in the complex was dated by LA-ICP-MS on 20 zircons that yielded a 206Pb–238U weighted average age of 286 ± 2 Ma. Considering the fact that all these basalts are imbricated against Permian tuffaceous sediments and limestone, we propose that the LC formed as an ophiolite in a fore-arc in Carboniferous–Permian time. This indicates that the Palaeo-Asian ocean still existed at 286 ± 2 Ma in early Permian time, and thus the time of closure of the Palaeo-Asian ocean was in or after the late Permian.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ao, S. J., Xiao, W. J., Han, C. M., Mao, Q. G. & Zhang, J. E. 2010. Geochronology and geochemistry of Early Permian mafic-ultramafic complexes in the Beishan area, Xinjiang, NW China: implications for late Paleozoic tectonic evolution of the southern Altaids.Gondwana Research 18, 466–78.CrossRefGoogle Scholar
Bazhenov, M. L., Collins, A. Q., Degtyarev, K. E., Lavashova, N. M., Mikolaichuk, A. V., Pavlov, V. E. & Van der Voo, R. 2003. Paleozoic northward drift of the North Tien Shan (Central Asia) as revealed by Ordovician and Carboniferous paleomagnetism. Tectonophysics 366, 113–41.CrossRefGoogle Scholar
Bedard, J. 1999. Petrogenesis of boninites from the Betts Cove ophiolite, Newfoundland, Canada: identification of subducted source components. Journal of Petrology 40, 1853–89.CrossRefGoogle Scholar
Boynton, W. V. 1984. Geochemistry of the rare earth elements: meteorite study. In Rare Earth Element Geochemistry (ed. Henderson, P.), pp. 63114. Amsterdam: Elsevier.CrossRefGoogle Scholar
Buchan, C., Pfänder, J., Kröner, A., Brewer, T. S., Tomurtogoo, O., Tomurhuu, D., Cunningham, D. & Windley, B. F. 2002. Timing of accretion and collisional deformation in the Central Asian orogenic belt: implications of granite geochronology in the Bayankhongor ophiolite zone. Chemical Geology 192, 2345.Google Scholar
Chen, F., Hagner, E. & Todt, W. 2000. Zircon ages. Nd isotopic and chemical compositions of orthogneisses from the Black Forest, Germany – evidence for a Cambrian magmatic arc. International Journal of Earth Sciences 88, 791802.Google Scholar
Chen, Z. H., Wang, D. H., Gong, Y. F., Chen, Y. C. & Chen, S. P. 2006. 40Ar-39Ar isotope dating of muscovite from Jingerquan pegmatite rare metal deposit in Hmni, Xinjiang, and its geological significance. Mineral Deposits 25, 470–6 (in Chinese with English abstract).Google Scholar
Cluzel, D., Aitchison, J. C. & Picard, C. 2001. Tectonic accretion and underplating of mafic terranes in the late Eocene intraoceanic fore-arc of New Caledonia (Southwest Pacific); geodynamic implications. Tectonophysics 340, 2359.CrossRefGoogle Scholar
Coleman, R. 1989. Continental growth of Northwest China. Tectonics 8, 621–35.CrossRefGoogle Scholar
Cunningham, D., Owen, L. A., Snee, L. W. & Li, J. L. 2003. Structural framework of a major intracontinental orogenic termination zone: the easternmost Tien Shan, China. Journal of the Geological Society, London 160, 575–90.CrossRefGoogle Scholar
Dilek, Y. & Furnes, H. 2011. Ophiolite genesis and global tectonics: geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Geological Society of America Bulletin 123, 387411.CrossRefGoogle Scholar
Dobretsov, N. L., Berzin, N. A. & Buslov, M. M. 1995. Opening and the tectonic evolution of Paleo-Asian ocean. International Geology Review 35, 335–60.CrossRefGoogle Scholar
Fang, Z. J. 1997. Southward intrusion of Angaran migrants into Tarim during the latest Permian and the global climatic cooling event. Acta Geoscientica Sinica 36, 6576 (in Chinese with English abstract).Google Scholar
Ferrari, L., Petrone, C. M. & Francalanci, L. 2001. Generation of oceanic-island basalt-type volcanism in the western Trans-Mexican volcanic belt by slab rollback, asthenosphere infiltration, and variable flux melting. Geology 29, 507–10.2.0.CO;2>CrossRefGoogle Scholar
Gao, J., Li, M., Xiao, X., Tang, Y. & He, G. 1998. Paleozoic tectonic evolution of the Tianshan orogen, northwestern China. Tectonophysics 287, 213–31.Google Scholar
GSBGMR 1989. Regional Geology of Gansu Province, Geological Memoirs. Beijing: Geological Publishing House.Google Scholar
Guivel, C., Lagabrielle, Y., Bourgois, J., Maury, R. C., Fourcade, S. & Martin, H. 1999. New geochemical constraints for the origin of ridge-subduction-related plutonic and volcanic suites from the Chile Triple Junction (Taitao peninsula and Site 863, Leg ODP 141 on the Tqitao Ridge). Tectonophysics 311, 83111.CrossRefGoogle Scholar
Guo, F. X. 2001. Paleozoic tectono-paleobiogeography of Xinjiang, China. Xinjiang Geology 19, 20–6.Google Scholar
Han, B., Wang, S., Jahn, B.-M., Hong, D., Kagami, H. & Sun, Y. 1997. Depleted mantle source for the Ulungur River A-type granites from North Xinjiang, China: geochemistry and Nd-Sr isotopic evidence, and implications for the Phanerozoic crustal growth. Chemical Geology 138, 135–59.CrossRefGoogle Scholar
Hawkins, J. W. 1994. Petrologic synthesis: Lau Basin transect (Leg 135). In Proceedings of the Ocean Drilling Program, Scientific Results, vol. 135 (eds Hawkins, J., Parson, L., Allan, J., et al.), pp. 879905. College Station, Texas.CrossRefGoogle Scholar
Hawkins, J. W. 2003. Geology of supra-subduction zones-Implications for the origin of ophiolites. In Ophiolite Concept and the Evolution of Geological Thought (eds Y. Dilek & S. Newcomb), pp. 227–68. Geological Society of America, Special Papers no. 373.Google Scholar
Hendrix, M. S., Graham, S. A., Amory, J. Y. & Badarch, G. 1996. Noyon Uul Syncline, southern Mongolia; Lower Mesozoic sedimentary record of the tectonic amalgamation of Central Asia. Geological Society of America Bulletin 108, 1256–74.2.3.CO;2>CrossRefGoogle Scholar
Hendrix, M. S. 2000. Evolution of Mesozoic sandstone composition, southern Junggar, northern Tarim, and western Turpan basins, Northwest China: a detrital record of the ancestral Tian Shan. Journal of Sedimentary Research 70, 520–32.CrossRefGoogle Scholar
Hoeck, V., Koller, F., Meisel, T. & Onuzi, K. 2002. The Jurassic South Albanian ophiolites: MOR- vs. SSZ-type ophiolites. Lithos 65, 143–64.CrossRefGoogle Scholar
Jiang, S. H., Nie, F. J., Chen, W., Liu, Y., Bai, D. M., Liu, X. Y. & Zhang, S. H. 2003. Discovery of Yanshanian K-feldspar granite in Huitongshan Copper Deposit, Gansu Province, and its implication. Mineral Deposits 22, 185–90.Google Scholar
Jiang, C. Y., Xia, M. Z., Yu, X., Dai, D. X., Wei, W. & Ye, S. F. 2007. Liuyuan trachybasalt belt in the northeastern Tarim Plate: products of asthenosphere mantle decompressional melting. Acta Petrologica Sinica 23, 1765–78 (in Chinese with English abstract).Google Scholar
Karsten, J. L., Klein, E. M. & Sherman, S. B. 1996. Subduction zone geochemical characteristics in ocean ridge basalts from the southern Chile Ridge: implications of modem ridge subduction systems for the Archean. Lithos 37, 143–61.CrossRefGoogle Scholar
Lai, X. R., Jiang, S. H., Qiu, X. P., Liu, Y., Hu, P. & Zhang, W. Y. 2007. 40Ar-39Ar age and geochemical features of Hercynian intermediate acidic rock in Beidashan Rock Belt, Aixa. Acta Geologica Sinica 81, 370–80.Google Scholar
Lamb, M. A. & Badarch, G. 2000. Paleozoic sedimentary basins and volcanic-arc systems of southern Mongolia; new stratigraphic and sedimentologic constraints. In Tectonic Studies of Asia and the Pacific Rim: A tribute to Benjamin M. Page (1911–1997) (eds Ernst, W. G. & Coleman, R. G.), pp. 107–41. Columbia, MD, United States: Bellweather Publishing for the Geological Society of America.Google Scholar
Lamb, M. A., Badarch, G., Navratil, T. & Poier, R. 2008. Structural and geochronologic data from the Shin Jinst area, eastern Gobi Altai, Mongolia: implications for Phanerozoic intracontinental deformation in Asia. Tectonophysics 451, 312–30.Google Scholar
Li, H. Q., Chen, F. W., Lu, Y. F., Yang, H. M., Guo, J. & Mei, Y. P. 2004. Zircon SHRIMP U-Pb age and strontium isotopes of mineralized granitoid in the Sanchakou copper polymetallic deposit, East Tianshan Mountains. Acta Geoscientica Sinica 25, 191–5 (in Chinese with English abstract).Google Scholar
Li, H. Q., Chen, F. W., Mei, Y. P., Wu, H., Chen, S. L., Yang, J. Q. & Dai, Y. C. 2006. Isotopic ages of No. 1 intrusive body in Pobei mafic-ultramafic belt of Xinjiang and their geological significance. Mineral Deposits 25, 463–9.Google Scholar
Li, Y. A., Sun, D. J. & Zheng, J. 2002. Paleomagnetic study tectonic evolution of Xinjiang and its neighboring regions. Xinjiang Geology 20, 193235 (in Chinese with English abstract).Google Scholar
Liu, C., Zhao, Z. H. & Guo, Z. J. 2006. Chronology and geochemistry of lamprophyre dykes from Beishan area, Gansu Province and implications for the crust-mantle interaction. Acta Petrologica Sinica 25, 1941306 (in Chinese with English abstract).Google Scholar
Liu, X. C., Chen, B. L., Jahn, B. M., Wu, G. G. & Liu, Y. S. 2011. Early Paleozoic (ca. 465 Ma) eclogites from Beishan (NW China) and their bearing on the early evolution of the southern Central Asian Orogenic Belt. Journal of Asian Earth Sciences 42, 715–31.Google Scholar
Liu, X. Y. & Wang, Q. 1995. Tectonics of orogenic belts in the Beishan Mountains, western China and their evolution. Geoscience Studies 28, 3748 (in Chinese with English abstract).Google Scholar
Ma, R. S., Shu, L. S. & Sun, J. 1997. Tectonic Evolution and Metalogeny of Eastern Tianshan Mountains. Beijing: Geological Publishing House.Google Scholar
Mao, Q. G., Xiao, W. J., Han, C. M., Yuan, C. & Sun, M. 2008. Late paleozoic southward accretionary polarity of the eastern Junggar orogenic belt: insight from the Dajiashan and other A-type granites. Acta Petrologica Sinica 24, 733–42.Google Scholar
Mao, Q. G., Xiao, W. J., Han, C. M., Sun, M., Yuan, C., Yan, Z., Li, J. L., Yong, Y. & Zhang, J. E. 2006. Zircon U-Pb age and the geochemistry of the Baishiquan mafic-ultramafic complex in the eastern Tianshan, Xinjiang: constraints on the closure of the Paleo-Asian Ocean. Acta Petrologica Sinica 22, 153–62 (in Chinese with English abstract).Google Scholar
Mao, Q. G., Xiao, W. J., Han, C. M., Sun, M., Yuan, C., Zhang, J., Ao, S. J. & Li, J. L. 2010. Discovery of Middle-Silurian adakite granite and its tectonic significance in Liuyuan area, Beishan Mountains, NW China. Acta Petrologica Sinica 26, 584–96 (in Chinese with English abstract).Google Scholar
Mei, H. L., Li, H. M., Lu, S. N., Yu, H. F., Zuo, Y. C. & Li, Q. 1999. The age and origin of the Liuyuan granitoid, northwestern Gansu. Acta Petrologica et Mineralogica 18, 1417 (in Chinese with English abstract).Google Scholar
Mei, H., Yu, H., Li, Q., Lu, S., Li, H., Zuo, Y., Zuo, G., Ye, D. & Liu, J. 1998. The first discovery of eclogite and Palaeoproterozoic granitoids in the Beishan area, northwestern Gansu Province, China. Chinese Science Bulletin 44 (4), 356–61.CrossRefGoogle Scholar
Neal, C. R., Mahoney, J. J. & Chazey III, W. J. 2002. Mantle sources and the highly variable role of continental lithosphere in basalt petrogenesis of the Kerguelen plateau and Broken ridge LIP: results from ODP Leg 183. Journal of Petrology 37, 1177–205.Google Scholar
Nie, F. J., Jiang, S. H., Bai, D. M., Wang, X. L., Su, X. X., Li, J. C., Liu, Y. & Zhao, X. M. 2002 a. Metallogenic Studies and Ore Prospecting in the Conjunction Area of Inner Mongolia Autonomous Region, Gansu Province and Xinjiang Uygur Autonomous Region (Beishan Mt.), Northwest China. Beijing: Geological Publishing House.Google Scholar
Nie, F. J., Jiang, S. H., Liu, Y., Chen, W., Liu, X. Y. & Zhang, S. H. 2002 b. 40Ar/39Ar isotopic age dating on K-feldspar separates from eastern Huanniushan granite, Gansu province, and its geological significance. Chinese Journal of Geology 37, 415–22.Google Scholar
Ou, Y. S., Wang, Z., Zhan, J. Z. & Zhou, Y. X. 1993. A preliminary discussion on phytoprovincial characters of Carboniferous-Permian palynofloras in Xinjiang, NW China. Acta Micropalaeontologica Sinica 10, 237–55 (in Chinese with English abstract).Google Scholar
Ou, Y. S., Zhu, H. C., Zhan, J. Z. & Wang, Z. 2004. Comparison of Permian palynofloras from the Junggar and Tarim basins and its bearing on phytoprovincialism and stratigraphy. Journal of Stratigraphy 28, 193207 (in Chinese with English abstract).Google Scholar
Pan, J. H., Guo, Z. J., Liu, C. & Zhao, Z. H. 2008. Geochronology, geochemistry and tectonic implications of Permian basalts in Hongliuhe area on the border between Xinjiang and Gansu. Acta Petrologica Sinica 24, 793802.Google Scholar
Pearce, J. A., Alabaster, T., Shelton, A. W. & Searle, M. P. 1981. The Oman ophiolite as a Cretaceous arc-basin complex: evidence and implications. Philosophical Transactions of the Royal Society of London, Series A 300, 299317.Google Scholar
Qu, J. F., Xiao, W. J., Windley, B. F., Han, C. M., Mao, Q. G., Ao, S. J. & Zhang, J. E. 2011. Ordovician eclogites from the Chinese Beishan: implications for the tectonic evolution of the southern Altaids. Journal of Metamorphic Geology 29, 803–20. First published online 26 April 2011. doi:10.1111/j.1525-1314.2011.00942.x.CrossRefGoogle Scholar
Qu, X., Wu, S. Z., Li, Y. A. & Li, Q. 2002. Dicynodont and ecological environment of late Permian to early stage of middle Triassic at Junggar southern margin-Turpan. Xinjiang Geology 20, 187–91 (in Chinese with English abstract).Google Scholar
Saccani, E. & Photiades, A. 2004. Mid-ocean ridge and supra-subduction affinities in the Pindos ophiolites (Greece): implications for magma genesis in a forearc setting. Lithos 73, 229–53.CrossRefGoogle Scholar
Şengör, A. M. C. & Natal'in, B. 1996. Turkic-type orogeny and its role in the making of the continental crust. Annual Reviews of Earth and Planetary Sciences 24, 263337.CrossRefGoogle Scholar
Şengör, A. M. C., Natal'in, B. A. & Burtman, U. S. 1993. Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia. Nature 364, 209304.Google Scholar
Shervais, J. W. 1982. Ti-V plots and the petrogenesis of modern and ophiolitic lavas. Earth and Planetary Science Letters 59, 101–18.CrossRefGoogle Scholar
Shi, Y. S., Lu, H. F., Jia, D., Cai, D. S., Wu, S. M. & Chen, C. M. 1994. Paleozoic plate-tectonic evolution of the Tarim and western Tianshan regions, western China. International Geology Reviews 36, 1058–66.Google Scholar
Stern, R. J. 2004. Subduction initiation: spontaneous and induced. Earth and Planetary Science Letters 226, 275–92.CrossRefGoogle Scholar
Stern, R. J. 2008. Neoproterozoic crustal growth: the solid Earth system during a critical episode of Earth history. Gondwana Research 14, 3350.CrossRefGoogle Scholar
Stern, R. J. 2009. The anatomy and ontogeny of modern intra-oceanic arc systems. In The Evolving Continents: Understanding Processes of Continental Growth (eds Kusky, T. M., Zhai, M. G. & Xiao, W. J.), pp. 7–34. Geological Society of London, Special Publication no. 338.Google Scholar
Sun, A. L. 1973. Permo-Triassic dicynodonts from Tufan, Sinkiang. In Permo-Triassic Vertebrate Fossils of the Turfan Basin, pp. 53–68. Memoir IVPP Academia Sinica.Google Scholar
Sun, S. S. & McDonough, W. F. 1989. Chemical and isotopic systematic of oceanic basalts: implications for mantle composition and process. In Magmatism in the Ocean Basins (eds A. D. Saunders & M. J. Norry), pp. 3l3–45. Geological Society of London, Special Publication no. 42.Google Scholar
Tejada, M. L., Mahoney, J. J., Duncan, R. A. & Hawkins, M. P. 1996. Age and geochemistry of basement and alkalic rocks of Malaita and Santa Isabel, Solomon island, southern margin of Ontong Java Plateau. Journal of Petrology 37, 361–94.CrossRefGoogle Scholar
Tian, Y. Z. 1993. Studies the characteristic and characteristic of contain gold about the Shijinpo intrusion in Beishan Mountains, Gansu Province. Geology School of Xi'an 15, 62–8 (in Chinese with English abstract).Google Scholar
Ueda, H. & Miyashita, S. 2005. Tectonic accretion of a subducted intraoceanic remnant arc in Cretaceous Hokkaido, Japan, and implications for evolution of the Pacific northwest. Island Arc 14, 582–98.CrossRefGoogle Scholar
Wang, Q. L., Chen, W., Han, D., Wang, C. Y., Liu, X. Y. & Zhang, H. 2008. The age and mechanism of formation of the Jinwozi gold deposit, Xinjiang. Geology in China 35, 286–92.Google Scholar
Winchester, J. A. & Floyd, P. A. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology 20, 325–43.Google Scholar
Windley, B. F., Alexeiev, D., Xiao, W., Kröner, A. & Badarch, G. 2007. Tectonic models for accretion of the Central Asian Orogenic belt. Journal of the Geological Society, London 164, 3147.Google Scholar
Wood, D. A. 1980. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province. Earth and Planetary Science Letters 50, 1130.Google Scholar
Wu, F. Y., Yang, Y. H., Xie, L. W., Yang, J. H. & Xu, P. 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chemical Geology 234, 105–26.CrossRefGoogle Scholar
Wu, S. Z. 1993. Intrusion of exotic plants of late Permian into the northern margin of Tarim. Xinjiang Geology 11, 140–6 (in Chinese with English abstract).Google Scholar
XBGMR 1993. Regional Geology of Xinjiang Autonomous Region, Geological Memoirs, Ser. 1, No. 32, Map Scale 1: 1,500,000. Beijing: Geological Publishing House.Google Scholar
Xiao, W. J., Han, C. M., Yuan, C., Sun, M., Lin, S. F., Chen, H. L., Li, Z. L., Li, J. L. & Sun, S. 2008. Middle Cambrian to Permian subduction-related accretionary orogenesis of North Xinjiang, NW China: implications for the tectonic evolution of Central Asia. Journal of Asian Earth Sciences 32, 102–17.CrossRefGoogle Scholar
Xiao, W. J., Huang, B. C., Han, C. M., Sun, S. & Li, J. L. 2010 a. A review of the western part of the Altaids: a key to understanding the architecture of accretionary orogens. Gondwana Research 18, 253–73.CrossRefGoogle Scholar
Xiao, W. J., Kröner, A. & Windley, B. F. 2009. Geodynamic evolution of Central Asia in the Paleozoic and Mesozoic. International Journal of Earth Sciences 98, 1185–8.CrossRefGoogle Scholar
Xiao, W. J., Windley, B. F., Badarch, G., Sun, S., Li, J. L., Qin, K. Z. & Wang, Z. H. 2004 a. Palaeozoic accretionary and convergent tectonics of the southern Altaids: implications for the lateral growth of Central Asia. Journal of the Geological Society, London 161, 339–42.CrossRefGoogle Scholar
Xiao, W. J., Windley, B. F., Hao, J. & Zhai, M. G. 2003. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: termination of the Central Asian orogenic belt. Tectonics 22, 1069, doi: 10.1029/2002TC1484.Google Scholar
Xiao, W. J., Windley, B. F., Huang, B. C., Han, C. M., Yuan, C., Chen, H. L., Sun, M., Sun, S. & Li, J. L. 2009. End-Permian to mid-Triassic termination of the accretionary processes of the southern Altaids: implications for the geodynamic evolution, Phanerozoic continental growth, and metallogeny of Central Asia. International Journal of Earth Sciences 98, 1189–287.CrossRefGoogle Scholar
Xiao, W. J., Zhang, L. C., Qin, K. Z., Sun, S. & Li, J. L. 2004 b. Paleozoic accretionary and collisional tectonics of the Eastern Tianshan (China): implications for the continental growth of central Asia. American Journal of Science 304, 370–95.Google Scholar
Xiao, W. J., Mao, Q. G., Windley, B. F., Han, C. M., Qu, J. F., Zhang, J. E., Ao, S. J., Guo, Q. Q., Cleven, N. R., Lin, S. F., Shan, Y. H. & Li, J. L. 2010 b. Paleozoic multiple accretionary and collisional processes of the Beishan orogenic collage. American Journal of Science 310, 1553–94.Google Scholar
Xu, P., Wu, F. Y., Xie, L. W. & Yang, Y. H. 2004. Hf isotopic compositions of the standard zircons for U-Pb dating. Chinese Science Bulletin 49, 1643–8.Google Scholar
Yang, J. S., Wu, C. L., Chen, S. Y., Shi, R. D., Zhang, J. X., Meng, F. C., Zuo, G. C., Wu, H. Q. & Constantinovskaya, E. 2006. Neoproterozoic eclogitic metamorphic age of the Beishan eclogite of Gansu, China: evidence from SHRIMP U-Pb isotope dating. Geology in China 33, 317–25.Google Scholar
Yu, H. F., Lu, S. N., Mei, H. L., Zhao, C. F., Li, H. S. & Li, H. M. 1999. Characteristics of Neoproterozoic eclogite-granite zones and deep level ductile shear zone in western China and their significance for continental reconstruction. Acta Petrologica Sinica 15, 532–8.Google Scholar
Yuan, H. L., Wu, F. Y., Gao, S., Liu, X. M., Ma, Z. P. & Wang, L. S. 2003. LA-ICP-MS zircon U-Pb dating and REE analysis of the Cenozoic intrusion in northeast China. Chinese Science Bulletin 48, 1511–20 (in Chinese).Google Scholar
Zhang, L. F., Ai, Y. L., Li, X. P., Rubatto, D., Song, B., Williams, S., Song, S. G., Ellis, D. & Liou, J. G. 2007. Triassic collision of western Tianshan orogenic belt, China: evidence from SHRIMP U–Pb dating of zircon from HP/UHP eclogitic rocks. Lithos 96, 266–80.Google Scholar
Zhang, Z. Z., Gu, L. X., Wu, H., Xi, A. H. & Tang, J. H. 2005. Zircons SHRIMP dating of the Weiya intrusion eastern Tianshan Mountains and its geological significance. Acta Geologica Sinica 12, 472–7.Google Scholar
Zhao, Z. H., Guo, Z. J., Han, B. F., Wang, Y. & Liu, C. 2006. Comparative study on Permian basalts from eastern Xinjiang-Beishan area of Gansu province and its tectonic implications. Acta Petrologica Sinica 22, 1279–93 (in Chinese with English abstract).Google Scholar
Zhao, Z. H., Guo, Z. J. & Wang, Y. 2007. Geochronology, geochemical characteristics and tectonic implications of the granitoids from Liuyuan area, Beishan, Gansu province, northwest China. Acta Petrologica Sinica 23, 1847–60 (in Chinese with English abstract).Google Scholar
Zheng, Y., Zhang, Q., Wang, Y., Liu, R., Wang, S. G., Zuo, G., Wang, S. Z., Lkaasuren, B., Badarch, G. & Badamgarav, Z. 1996. Great Jurassic thrust sheets in Beishan (North Mountains); Gobi areas of China and southern Mongolia. Journal of Structural Geology 18 (9), 1111–26.CrossRefGoogle Scholar
Zhou, M.-F., Lesher, C. M., Yang, Z. X., Li, J. W. & Sun, M. 2004. Geochemistry and petrogenesis of 270 Ma Ni-Cu-(PGE) sulfide-bearing mafic intrusions in the Huangshan district, Eastern Xinjiang, Northwest China: implications for the tectonic evolution of the Central Asian orogenic belt. Chemical Geology 209, 233–57.CrossRefGoogle Scholar
Zhou, X. H., Sun, M., Zhang, G. H. & Chen, S. H. 2002. Continental crust and lithospheric mantle interaction beneath North China: isotopic evidence from granulite xenoliths in Hannuoba, Sino-Korean craton. Lithos 62, 111–24.CrossRefGoogle Scholar
Zhu, H. C. 1997. Discussion on phytoprovincial characters of Permian palynofloras from Tarim Basin and their implications on the evolution of Tarim block. Acta Micropalaeontologica Sinica 14, 315–20 (in Chinese with English abstract).Google Scholar
Zhu, H. C. 2001. The floral response to the Permian tectonic evolution in Tarim plate. Acta Geoscientica Sinica 22, 6772 (in Chinese with English abstract).Google Scholar
Zindler, A. & Hart, S. R. 1986. Chemical geodynamics. Annual Reviews of Earth and Planetary Sciences 14, 493571.CrossRefGoogle Scholar
Zuo, G. C., Liu, Y. K. & Liu, C. Y. 2003. Framework and evolution of the tectonic structure in Beishan area across Gansu Province, Xinjiang Autonomous region and Inner Mongolia Autonomous Region. Acta Geologica Gansu 12, 115 (in Chinese with English abstract)Google Scholar
Zuo, G., Zhang, S., He, G. & Zhang, Y. 1991. Plate tectonic characteristics during the early Paleozoic in Beishan near the Sino-Mongolian border region, China. Tectonophysics 188 (3–4), 385–92.Google Scholar
Zuo, G. C., Zhang, S. L., Wang, X., Jin, S. Q., He, G. Q., Zhang, Y., Li, H. C. & Bai, W. C. 1990. Plate Tectonics and Metallogenic Regularities in Beishan region. Peking University Publishing House.Google Scholar