No CrossRef data available.
Article contents
Late Pleistocene chronology and the glacial–interglacial cycle
Published online by Cambridge University Press: 01 May 2009
Summary
Alternative time-scales differing by 25% have been proposed for the climatic sequence revealed by deep-sea cores. Both scales are based on radiometric data. Recent evidence which is here summarized favours the time-scale which gives the smaller values for the ages of late Pleistocene events; it supports the estimate of 40 ka rather than 50 ka for the average length of the principal climatic cycle.
- Type
- Articles
- Information
- Copyright
- Copyright © Cambridge University Press 1974
References
Arrhenius, G. 1952. Sediment cores from the East Pacific. Rep. Swed. deep Sea Exped. 5 (1).Google Scholar
Bonadonna, F. P. & Bigazzi, G. 1970. Studi sul Pleistocene del Lazio. VIII. Datazione di tufi intertirreniani. Boll. Soc. Geol. It. 89, 464–73.Google Scholar
Broecker, W. S. 1971. Calcite accumulation rates and glacial to interglacial changes in oceanic mixing. In Turekian, K. K. (Ed.): Late Cenozoic Glacial Ages, 239–65. Yale.Google Scholar
Broecker, W. S. & Bender, M. L. 1972. Age determinations on marine strandlines. In Bishop, W. W. and Miller, J. A. (Eds): Calibration of Hominoid Evolution, 19–35. Edinburgh.Google Scholar
Broecker, W. S. & van Donk, J. 1970. Insolation changes, ice volumes and the O18 record in deep-sea cores. Rev. Geophys. Space Phys. 8, 169–98.CrossRefGoogle Scholar
Broecker, W. S., Thurber, D. L., Goddard, J., Ku, T.-L., Matthews, R. K. & Mesolella, K. J. 1968. Milankovitch hypothesis supported by precise dating of coral reefs and deep-sea sediments. Science, N.Y. 159, 297–300.CrossRefGoogle ScholarPubMed
Dansgaard, W., Johnsen, S. J., Clausen, H. B. & Langway, C. C. 1971. Climatic record revealed by the Camp Century ice core. In Turekian, K. K. (Ed.): Late Cenozoic Glacial Ages, 37–56. Yale.Google Scholar
Dreimanis, A. & Karrow, P. F. 1972. Glacial history of the Great Lakes – St Lawrence region. [Proc.] 24th Int. geol. Congr., Montreal, Sect. 12, 5–15.Google Scholar
Emiliani, C. 1966. Paleotemperature analysis of Caribbean cores and a generalized temperature curve. J. Geol. 74, 109–26.CrossRefGoogle Scholar
Evans, P. 1971. Towards a Pleistocene time-scale. Part 2 of The Phanerozoic time-scale – a supplement. Spec. Publ. geol. Soc. Lond. 5, 123–356.CrossRefGoogle Scholar
Evans, P. 1972. The present status of age determination in the Quaternary. [Proc.] 24th Int. geol. Congr., Montreal, Sect. 12, 16–21.Google Scholar
Hays, J. D., Saito, T., Opdyke, N. D. & Burckle, L. H. 1969. Pliocene–Pleistocene sediments of the Equatorial Pacific. Bull. geol. Soc. Am. 80, 1481–514.CrossRefGoogle Scholar
Imbrie, J. & Kipp, N. G. 1971. A new micropaleontological method for quantitative paleoclimatology. In Turekian, K. K. (Ed.): Late Cenozoic Glacial Ages, 71–181. Yale.Google Scholar
Mortari, R. 1972. Alti livelli del mare del Pleistocene superiore nel Mediterraneo centrosettentrionale. Ann. Geofis. 25, 75–97.Google Scholar
Rona, E. & Emiliani, C. 1969. Absolute dating of Caribbean cores P6304–8 and P6304–9. Science, N.Y. 163, 66–8.CrossRefGoogle ScholarPubMed
Shackleton, N. J. 1971. Notes on Pleistocene radiometric age-determinations, pp. 35–37; Items 367 to 394, pp. 80–110. In The Phanerozoic time-scale – a supplement. Spec. Publ. geol. Soc. Lond. 5.CrossRefGoogle Scholar
Shackleton, N. J. & Opdyke, N. D. 1973. Oxygen isotope and palaeomagnetic stratigraphy of Equatorial Pacific core V28–238. J. quatern. Res. 3, 39–55.CrossRefGoogle Scholar
Smith, J. D. & Foster, J. H. 1969. Geomagnetic reversal in Brunhes normal polarity epoch. Science, N.Y. 163, 565–7.CrossRefGoogle ScholarPubMed