Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-04T21:58:56.323Z Has data issue: false hasContentIssue false

Late Ordovician to Silurian ensialic magmatism in Liverpool Land, East Greenland: new evidence extending the northeastern branch of the continental Laurentian magmatic arc

Published online by Cambridge University Press:  03 October 2011

LARS EIVIND AUGLAND*
Affiliation:
Department of Geosciences, University of Oslo, P. O. Box 1047, Blindern, 0316 Oslo, Norway
ARILD ANDRESEN
Affiliation:
Department of Geosciences, University of Oslo, P. O. Box 1047, Blindern, 0316 Oslo, Norway
FERNANDO CORFU
Affiliation:
Department of Geosciences, University of Oslo, P. O. Box 1047, Blindern, 0316 Oslo, Norway
HANS KRISTIAN DAVIKNES
Affiliation:
Helse- og velferdsetaten, P. O. Box 30, Sentrum, 0101 Oslo, Norway
*
Author for correspondence: [email protected]

Abstract

New U–Pb ID-TIMS geochronological and whole-rock geochemical data from the Hurry Inlet Plutonic Terrane in Liverpool Land provide evidence of a Late Ordovician to Silurian magmatic arc in the East Greenland Caledonides. These voluminous granitoid rocks range from meladiorite to monzonite and granite, they are alkali-calcic to calc-alkaline and magnesian, and have characteristic arc granitoid trace element signatures. Zircon data give ages of 446 ± 2 and 438 ± 4 Ma for two phases of the Hurry Inlet Composite Pluton, 426 ± 1 Ma for a meladioritic xenolith in the anatectic Triaselv granite, and 424 ± 1 Ma for the Hodal-Storefjord Pluton. The Late Ordovician plutons can be correlated with similar plutons in the uppermost nappes of the Scandinavian Caledonides, likely representing the northern branch of magmatic arcs formed on the Laurentian margin. Magmatism appears to have continued sporadically until about 425 Ma when a major, short-lived, magmatic event formed the bulk of the batholith on Liverpool Land. This activity was likely mantle-driven and can be correlated with the Newer Granites in Scotland, for which a slab break-off mechanism has been proposed. The increased heat flow from this process can also explain the generation of the crustally derived, syntectonic, two-mica granites, which are the areally most important Caledonian suite in East Greenland.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andresen, A., Rehnstrom, E. F. & Holte, M. 2007. Evidence for simultaneous contraction and extension at different crustal levels during the Caledonian orogeny in NE Greenland. Journal of the Geological Society, London 164, 869–80.CrossRefGoogle Scholar
Armstrong, H. A. & Owen, A.W. 2001. Terrane evolution of the paratectonic Caledonides of northern Britain. Journal of the Geological Society, London 158, 475–86.CrossRefGoogle Scholar
Atherton, M. P. & Ghani, A. A. 2002. Slab breakoff: a model for Caledonian, Late Granite syn-collisional magmatism in the orthotectonic (metamorphic) zone of Scotland and Donegal, Ireland. Lithos 62, 6585.CrossRefGoogle Scholar
Augland, L. E, Andresen, A. & Corfu, F. 2010. Age, structural setting and exhumation of the Liverpool Land Eclogite Terrane, East Greenland Caledonides. Lithosphere 2, 267–86.Google Scholar
Augland, L. E, Andresen, A. & Corfu, F. 2011. Terrane transfer during the Caledonian orogeny: Baltic affinities of the Liverpool Land Eclogite Terrane in East Greenland. Journal of the Geological Society, London 168, 1526.CrossRefGoogle Scholar
Barbarin, B. 1999. A review of the relationships between granitoid types, their origins and geodynamic environments. Lithos 46, 606–25.CrossRefGoogle Scholar
Barnes, C. G., Frost, C. D., Yoshinobu, A. S., McArthur, K., Barnes, M. A., Allen, C. M., Nordgulen, Ø. & Prestvik, T. 2007. Timing of sedimentation, metamorphism, and plutonism in the Helgeland Nappe Complex, north-central Norwegian Caledonides. Geosphere 3, 683703.CrossRefGoogle Scholar
Bennett, V. C. 2003. Compositional Evolution of the Mantle. In The Mantle and Core (ed. Carlson, R. W.), pp. 493519. Treatise on Geochemistry, vol. 2 (eds. Holland, H. D. & Turekian, K. K.). Oxford: Elsevier-Pergamon.Google Scholar
Brooks, C. K., Fawcett, J. J. & Gittins, J. 1976. Caledonian magmatic activity in south-eastern Greenland. Nature 260, 694–6.CrossRefGoogle Scholar
Brooks, C. K., Fawcett, J. J., Gittins, J. & Rucklidge, J. C. 1981. The Batbjerg complex, east Greenland: a unique ultrapotassic Caledonian intrusion. Canadian Journal of Earth Science 18, 274–85.CrossRefGoogle Scholar
Bruton, D. L. & Bockelie, J. F. 1980. geology and palaeontology of the Hølonda Area, Western Norway – A fragment of North America? In The Caledonides in the USA; Proceedings of the International Geological Program Caledonide Orogen Project 27, Blacksburg, VA (ed. Wones, D. R.), pp. 41–7. Department of Geological Sciences, Virginia Polytechnic Institute and State University, OH.Google Scholar
Cheeney, R. F. 1985. The plutonic igneous and high-grade metamorphic rocks of southern Liverpool Land, central East Greenland, part of a supposed Caledonian and Precambrian complex. Grønlands Geologiske Undersøgelse Rapport 123, 39 pp.Google Scholar
Cocks, T. R. M. & Torsvik, T. H. 2006. European geography in a global context from the Vendian to the end of the Palaeozoic. In European Lithosphere Dynamics (eds Gee, D. G. & Stephenson, R. A.), pp. 83–95. Geological Society of London Memoir 32.Google Scholar
Coe, K. 1975. The Hurry Inlet granite and related rocks of Liverpool Land, East Greenland. Grønlands Geologiske Undersøgelse Bulletin 115, 34 pp.Google Scholar
Coe, K. & Cheeney, R. F. 1972. Preliminary results of mapping in Liverpool Land, East Greenland. Rapport Grønlands Geologiske Undersøgelse 48, 720.Google Scholar
Corfu, F. & Hartz, E. H. 2011. U–Pb geochronology in Liverpool Land and Canning Land, E-Greenland-the complex record of a polyphase Caledonian orogeny. Canadian Journal of Earth Science 48, 122.Google Scholar
Corfu, F., Torsvik, T. H., Andersen, T. B., Ashwal, L. D., Ramsay, D. M. & Roberts, R. J. 2006. Early Silurian mafic-ultramafic and granitic plutonism in contemporaneous flysch, Mageroy, northern Norway: U–Pb ages and regional significance. Journal of the Geological Society, London 163, 291301.CrossRefGoogle Scholar
Fowler, M. B. & Henney, P. J. 1996. Mixed Caledonian appinite magmas: implications for lamprophyre fractionation and high Ba-Sr granite genesis. Contributions to Mineralogy and Petrology 126, 199215.CrossRefGoogle Scholar
Friedrich, A. M., Bowring, S. A., Martin, M. W. & Hodges, K. V. 1999. Short-lived continental magmatic arc at Connemara, western Irish Caledonides: implications for the age of the Grampian orogeny. Geology 27, 2730.Google Scholar
Friedrich, A. M., Hodges, K. V., Bowring, S. A. & Martin, M. W. 1999. Geochronological constraints on the magmatic, metamorphic and thermal evolution of the Connemara Caledonides, western Ireland. Journal of the Geological Society, London 156, 1217–30.Google Scholar
Friderichsen, J. D. & Surlyk, F. 1981. Hurry Inlet. Geological map of Greenland, 1:100000.Google Scholar
Frost, B. R., Barnes, C. G., Collins, W. J., Arculus, R. J., Ellis, D. J. & Frost, C. D. 2001. A geochemical classification for granitic rocks. Journal of Petrology 42, 2033–48.CrossRefGoogle Scholar
Gill, J. B. 1981. Orogenic Andesites and Plate Tectonics. Berlin Heidelberg, New York: Springer-Verlag, 390 pp.CrossRefGoogle Scholar
Gilotti, J. A. & McClelland, W. C. 2005. Leucogranites and the time of extension in the East Greenland Caledonides. Journal of Geology 113, 399417.Google Scholar
Grenne, T., Ihlen, P. M. & Vokes, F. M. 1999. Scandinavian Caledonide metallogeny in a plate tectonic perspective. Mineralium Deposita 34, 422–71.Google Scholar
Grenne, T. & Roberts, D. 1998. The Hølonda Porphyrites, Norwegian Caledonides: geochemistry and tectonic setting of Early-Mid-Ordovician shoshonitic volcanism. Journal of the Geological Society, London 155, 131–42.Google Scholar
Goodenough, M., Young, B. N. & Parsons, I. 2004. The minor intrusions of Assynt, NW Scotland: early development of magmatism along the Caledonian Front. Mineralogical Magazine 68, 541–59.Google Scholar
Halliday, A. N., Aftalion, M., Parsons, I., Dickin, A. P. & Johnson, M. R. W. 1987. Syn-orogenic alkaline magmatism and its relationship to the Moine Thrust Zone and the thermal state of the Lithosphere in NW Scotland. Journal of the Geological Society, London 144, 611–17.CrossRefGoogle Scholar
Hansen, B. T. & Friderichsen, J. D. 1987. Isotopic age dating in Liverpool Land, East Greenland. Rapport Grønlands Geologiske Undersøgelser 134, 2537.Google Scholar
Hansen, B. T. & Steiger, R. H. 1971. The geochronology of the Scoresby Sund area. Rapport Grønlands Geologiske Undersøgelse 37, 55–7.CrossRefGoogle Scholar
Hartz, E. H., Andresen, A., Hodges, K. V. & Martin, M. W. 2001. Syncontractional extension and exhumation of deep crustal rocks in the East Greenland Caledonides. Tectonics 20, 5877.Google Scholar
Hartz, E. H., Andresen, A., Martin, M. W. & Hodges, K. V. 2000. U-Pb and 40Ar/39Ar constraints on the Fjord region detachment zone: a long-lived extensional fault in the central East Greenland Caledonides. Journal of the Geological Society, London 157, 795809.CrossRefGoogle Scholar
Hartz, E. H., Eide, E. A., Andresen, A., Midbøe, P., Hodges, K. V. & Kristiansen, S. N. 2002. 40Ar/39Ar geochronology and structural analysis: basin evolution and detrital feedback mechanisms, Hold with Hope region, East Greenland. Norwegian Journal of Geology 82, 341–58.Google Scholar
Heaman, L. M., Erdmer, P. & Owen, J. V. 2002. U–Pb geochronologic constraints on the crustal evolution of the Long Range Inlier, Newfoundland. Canadian Journal of Earth Science 39, 845–65.CrossRefGoogle Scholar
Higgins, A. K. 1988. The Krummedal supracrustal sequence in East Greenland. In Later Proterozoic Stratigraphy of the Northern Atlantic Regions (ed. Winchester, J. A.), pp. 8696. Glasgow: Blackie.Google Scholar
Higgins, A. K., Elvevold, S., Escher, J. C., Frederiksen, K. S., Gilotti, J. A., Henriksen, N., Jepsen, H. F., Jones, K. A., Kalsbeek, F., Kinny, P. D., Leslie, A. G., Smith, M. P., Thrane, K. & Watt, G. R. 2004. The foreland-propagating thrust architecture of the East Greenland Caledonides 72 °N–75 °N. Journal of the Geological Society, London 161, 1009–26.CrossRefGoogle Scholar
Higgins, A. K. & Leslie, A. G. 2008. Architecture and evolution of the East Greenland Caledonides – an introduction. In The Greenland Caledonides: Evolution of the Northeast Margin of Laurentia (eds Higgins, A. K., Gilotti, J. A. & Smith, M. P.), pp. 29–53. Geological Society of America Memoir 202.Google Scholar
Johnston, S., Gehrels, G., Valencia, V. & Ruiz, J. 2009. Small-volume U-Pb zircon geochronology by laser ablation-multicollector-ICP-MS. Chemical Geology 259, 218–29.Google Scholar
Johnston, S. M., Hartz, E. H., Brueckner, H. K. & Gehrels, G. E. 2010. U–Pb zircon geochronology and tectonostratigraphy of southern Liverpool Land, East Greenland: implications for deformation in the overriding plates of continental collisions. Earth Planetary Science Letters 297, 512–24.CrossRefGoogle Scholar
Kalsbeek, F., Higgins, A. K., Jepsen, H. F., Frei, R. & Nutman, A. P. 2008. Granites and Granites in the East Greenland Caledonides. In The Greenland Caledonides: Evolution of the Northeast Margin of Laurentia (eds Higgins, A. K., Gilotti, J. A. & Smith, M. P.), pp. 227–49. Geological Society of America Memoir 202.Google Scholar
Kalsbeek, F., Jepsen, H. F. & Jones, K. A. 2001. Geochemistry and petrogenesis of S-type granites in the East Greenland Caledonides. Lithos 57, 91109.CrossRefGoogle Scholar
Kalsbeek, F., Jepsen, H. F. & Nutman, A. P. 2001. From source migmatites to plutons; tracking the origin of ca. 435 Ma S-type granites in the East Greenland Caledonian Orogen. Lithos 57, 121.Google Scholar
Kinny, P. D., Friend, C. R. L., Strachan, R. A., Watt, G. R. & Burns, I. M. 1999. U-Pb geochronology of regional migmatites in East Sutherland, Scotland: evidence for crustal melting during the Caledonian orogeny. Journal of the Geological Society, London 156, 1143–52.Google Scholar
Kranck, E. H. 1935. On the crystalline complex of Liverpool Land. Meddelelser om Grønland 95, 1122.Google Scholar
Larsen, P. H. & Bengaard, H. J. 1991. Devonian basin initiation in East Greenland: a result of sinistral wrench faulting and Caledonian extensional collapse. Journal of the Geological Society, London 148, 355–68.CrossRefGoogle Scholar
Larsen, P. H., Olsen, H. & Clack, J. A. 2008. The Devonian basin in East Greenland-Review of basin evolution and vertebrate assemblages. In The Greenland Caledonides: Evolution of the Northeast Margin of Laurentia (eds Higgins, A. K., Gilotti, J. A. & Smith, M. P.), pp. 273–92. Geological Society of America Memoir 202.Google Scholar
Leslie, A. G. & Nutman, A. P. 2003. Evidence for Neoproterozoic orogenesis and early high temperature Scandian deformation events in the southern East Greenland Caledonides. Geological Magazine 140, 309–33.Google Scholar
Maniar, P. D. & Piccoli, P. M. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin 101, 635–43.Google Scholar
McCulloch, M. T. & Gamble, J. A. 1991. Geochemical and geodynamical constraints on subduction zone magmatism. Earth and Planetary Science Letters 102, 358–74.CrossRefGoogle Scholar
Meyer, G. B., Grenne, T. & Pedersen, R. B. 2003. Age and tectonic setting of the Neså Batholith: implications for Ordovician arc development in the Caledonides of Central Norway. Geological Magazine 140, 573–94.Google Scholar
Miller, J. S., Matzel, J. E. P., Miller, C. F., Burgess, S. D. & Miller, R. B. 2007. Zircon growth and recycling during the assembly of large, composite arc plutons. Journal of Volcanology and Geothermal Research 167, 282–99.CrossRefGoogle Scholar
Murphy, J. B. 2007. Igneous rock associations 8. Arc magmatism II: geochemical and isotopic characteristics. Geoscience Canada 34, 735.Google Scholar
Nilsen, O., Corfu, F. & Roberts, D. 2007. Silurian gabbro-diorite-trondhjemite plutons in the Trondheim Nappe Complex, Caledonides, Norway: petrology and U-Pb geochronology. Norwegian Journal of Geology 87, 329–42.Google Scholar
Nordgulen, Ø., Bickford, M. E., Nissen, A. L. & Wortman, G. L. 1993. U-Pb zircon ages from the Bindal Batholith, and the tectonic history of the Helgeland Nappe Complex, Scandinavian Caledonides. Journal of the Geological Society, London 150, 771–83.Google Scholar
Oliver, G. J. H., Wilde, S. A. & Wan, Y. 2008. Geochronology and geodynamics of Scottish granitoids from the late Neoproterozoic break-up of Rodinia to Palaeozoic collision. Journal of the Geological Society, London 165, 661–74.Google Scholar
Pearce, J. A., Harris, N. B. W. & Tindle, A. G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology 25, 956–83.Google Scholar
Peccerillo, A. & Taylor, S. R. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology 58, 6381.CrossRefGoogle Scholar
Pedersen, R. B., Bruton, D. L. & Furnes, H. 1992. Ordovician faunas, island arcs and ophiolites in the Scandinavian Caledonides. Terra Nova 4, 217–22.CrossRefGoogle Scholar
Pedersen, R. B., Furnes, H. & Dunning, G. 1991. A U/Pb age for the Sulitjelma Gabbro, north Norway: further evidence for the development of a Caledonian marginal basin in Ashgill–Llandovery time. Geological Magazine 128, 141–53.Google Scholar
Rehnstrøm, E. F. 2010. Prolonged Palaeozoic magmatism in the East Greenland Caledonides: some constraints from U-Pb ages and Hf isotopes. Journal of Geology 118, 447–65.CrossRefGoogle Scholar
Roberts, D., Melezhik, V. M. & Heldal, T. 2002. Carbonate formations and early NW-directed thrusting in the highest allochthons of the Norwegian Caledonides: evidence of a Laurentian ancestry. Journal of the Geological Society, London 159, 117–20.CrossRefGoogle Scholar
Roberts, D., Nordgulen, Ø. & Melezhik, V. 2007. The Uppermost Allochthon in the Scandinavian Caledonides: from a Laurentian ancestry through Taconian orogeny to Scandian crustal growth on Baltica. In 4-D Framework of Continental Crust (eds Hatcher, R. D., Carlson, M. P., McBride, J. H. & Catalán, J. R. Martinez), pp. 357–77. Geological Society of America, Memoir 200.Google Scholar
Rogers, G. & Dunning, G. R. 1991. Geochronology of appinitic and related granitic magmatism in the W Highlands of Scotland: constraints on the timing of transcurrent fault movement. Journal of the Geological Society, London 148, 1727.CrossRefGoogle Scholar
Sahlstein, T. G. 1935. Petrographie der Eklogiteinschlüsse in den Gneisen des südwestlichen Liverpool-Landes in Ost-Grönland. Meddelelser om Grønland 95, 143.Google Scholar
Selbekk, R. S., Skjerlie, K. P & Pedersen, R. B. 2000. Generation of anorthositic magma by H2O-fluxed anatexis of silica-undersaturated gabbro: an example from the north Norwegian Caledonides 137, 609–21.CrossRefGoogle Scholar
Shand, S. J. 1943. The Eruptive Rocks, 3rd ed. New York: John Wiley, 444 pp.Google Scholar
Smith, M. P. & Rasmussen, J. A. 2008. Cambrian–Silurian development of the Laurentian margin of the Iapetus Ocean in Greenland and related areas. The Greenland Caledonides: Evolution of the Northeast Margin of Laurentia (eds Higgins, A. K., Gilotti, J. A. & Smith, M. P.), pp. 137–67. Geological Society of America Memoir 202.Google Scholar
Soper, N. J., Strachan, R. A., Holdsworth, R. E., Gayer, R. A. & Greiling, R. O. 1992. Sinistral transpression and the Silurian closure of Iapetus. Journal of the Geological Society, London 149, 871–80.Google Scholar
Steinhoefel, G., Hegner, E. & Oliver, G. J. H. 2008. Chemical and Nd isotope constraints on granitoid sources involved in the Caledonian Orogeny in Scotland. Journal of the Geological Society, London 165, 817–27.CrossRefGoogle Scholar
Stephens, M. B. & Gee, D. G. 1985. A tectonic model for the evolution of the eugeoclinal terranes in the central Scandinavian Caledonides. In The Caledonide Orogen – Scandinavia and related areas (eds Gee, D. G. & Sturt, B. A.), pp. 953–70. Chichester: John Wiley & Sons.Google Scholar
Strachan, R. A., Martin, M. W. & Friderichsen, J. D. 2001. Evidence for contemporaneous yet contrasting styles of granite magmatism during extensional collapse of the northeast Greenland Caledonides. Tectonics 20, 458–73.CrossRefGoogle Scholar
Strachan, R. A., Smith, M., Harris, A. L. & Fettes, D. J. 2002. The Northern Highland and Grampian terranes. In The Geology of Scotland, 4th ed. (ed. Trewin, N. H.), pp. 81148. London: The Geological Society.Google Scholar
Styles, M. T, Gunn, A. G. & Rollin, K. E. 2004. A preliminary study of PGE in the Late Caledonian Loch Borralan and Loch Ailsh alkaline pyroxenite-syenite complexes, north-west Scotland. Mineralium Deposita 39 (2), 240–55.CrossRefGoogle Scholar
Thompson, R. N. 1982. Magmatism of the British Tertiary volcanic province. Scottish Journal of Geology 18, 49107.Google Scholar
Torsvik, T. H. 1997. Palaeozoic palaeogeography: a North Atlantic viewpoint. GFF 120, 109–18.Google Scholar
Torsvik, T. H., Smethurst, M. A., Meert, J. G., Van der Voo, R., McKerrow, W. S., Brasier, M. D., Sturt, B. A. & Walderhaug, H. J. 1996. Continental break-up and collision in the Neoproterozoic and Palaeozoic; a tale of Baltica and Laurentia. Earth-Science Reviews 40, 229–58.Google Scholar
Tucker, R. D., Boyd, R. & Barnes, S.-J. 1990. A U–Pb zircon age for the Råna intrusion, N. Norway: new evidence of basic magmatism in the Scandinavian Caledonides in Early Silurian time. Norsk Geologisk Tidsskrift 70, 229–39.Google Scholar
Tucker, R. D., Robinson, P., Solli, A., Gee, D. G., Thorsnes, T., Krogh, T. E., Nordgulen, O. & Bickford, M. E. 2004. Thrusting and extension in the Scandian hinterland, Norway: new U-Pb ages and tectonostratigraphic evidence. The American Journal of Science 304, 477532.Google Scholar
Van Breemen, O., Aftalion, M., Pankhurst, J. & Richardson, W. 1979. Age of the Glen Dessary syenite, Inverness-shire: diachronous Palaeozoic metamorphism across the Great Glen. Scottish Journal of Geology 15, 4962.CrossRefGoogle Scholar
Van Staal, C. R., Dewey, J. F., Mac Niocaill, C. & McKerrow, W. S. 1998. The Cambrian-Silurian tectonic evolution of the northern Appalachians and British Caledonides: history of a complex, west and southwest Pacific-type segment of Iapetus. In Lyell: The Past is the Key to the Present (eds Blundell, D. J. & Scott, A. C.), pp. 197–242. Geological Society of London, Special Publication no. 143.Google Scholar
Van Staal, C. R., Whalen, J. B., Valverde-Vaquero, P., Zagorevski, A. & Rogers, N. 2009. Pre-Carboniferous, episodic accretion-related, orogenesis along the Laurentian margin of the northern Appalachians. In Ancient Orogens and Modern Analogues (eds Murphy, J. B., Keppie, J. D. & Hynes, A. J.), pp. 271–316. Geological Society of London, Special Publication no. 237.Google Scholar
Watt, G. R., Kinny, P. D. & Friderichsen, J. D. 2000. U-Pb geochronology of Neoproterozoic and Caledonian tectonothermal events in the East Greenland Caledonides. Journal of the Geological Society, London 157, 1031–48.CrossRefGoogle Scholar
Whalen, J. B., McNicoll, V. J., van Staal, C. R., Lissenberg, J., Longstaffe, F. J., Jenner, G. A. & van Breeman, O. 2006. Spatial, temporal and geochemical characteristics of Silurian collision-zone magmatism, Newfoundland Appalachians: an example of a rapidly evolving magmatic system related to slab break-off. Lithos 89, 377404.Google Scholar
White, A. P., Hodges, K. V., Martin, M. W. & Andresen, A. 2002. Geologic constraints on middle-crustal behaviour during broadly synorogenic extension in the central East Greenland Caledonides. International Journal of Earth Sciences 91, 187208.CrossRefGoogle Scholar
Yoshinobu, A. S., Barnes, C. G., Nordgulen, Ø., Prestvik, T., Fanning, M. & Pedersen, R. B. 2002. Ordovician magmatism, deformation, and exhumation in the Caledonides of central Norway: an orphan of the Taconic orogeny? Geology 30, 883–6.Google Scholar
Zagorevski, A., Rogers, N., van Staal, C. R., McNicoll, V., Lissenberg, C. J. & Valverde-Vaquero, P. 2006. Lower to Middle Ordovician evolution of peri-Laurentian arc and backarc complexes in Iapetus: Constraints from the Annieopsquotch accretionary tract, central Newfoundland. Geological Society of America Bulletin 118, 324–42.Google Scholar