Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-10T05:18:10.821Z Has data issue: false hasContentIssue false

Late Mesozoic bipolar bivalve faunas

Published online by Cambridge University Press:  01 May 2009

J. A. Crame
Affiliation:
British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, U.K.

Abstract

Bipolar bivalve genera probably existed through the greater part of late Mesozoic (i.e. late Jurassic–late Cretaceous) time. Of the various theories put forward to account for their presence, those based on some form of global climatic zonation seem most appropriate. Although equatorial–polar temperature gradients were substantially less in late Mesozoic time than at the present day, high latitude regions were subjected to temperate (or even cool-temperate) climatic regimes. Macrobenthonic marine faunas may have been more susceptible to differentiation in response to these climatic patterns than nektonic ones. This is particularly so in the late Mesozoic strata of the Southern Hemisphere.

Type
Articles
Copyright
Copyright © Cambridge University Press 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arkell, W. J. 1956. Jurassic Geology of the World. Edinburgh: Oliver & Boyd, 806 pp.Google Scholar
Barron, E. J. 1983. A warm, equable Cretaceous: the nature of the problem. Earth Sciences Reviews 19, 305–38.CrossRefGoogle Scholar
Briggs, J. C. 1974. Marine Zoogeography. New York: McGraw Hill, 495 pp.Google Scholar
Buitrón, B. E. 1984. Late Jurassic bivalves and gastropods from northern Zacatecas, Mexico, and their biogeographic significance. In Jurassic–Cretaceous Biochronology and Paleogeography of North America (ed. Westermann, G. E. G.), pp. 8998. Special Paper of the Geological Association of Canada no. 27.Google Scholar
Cain, A. J. 1982. On homology and convergence. In Problems of Phylogenetic Reconstruction (ed. Joysey, K. A. Friday, A. E.), pp. 119. London: Academic Press.Google Scholar
Casey, R. & Rawson, P. F. (eds) 1973. The Boreal Lower Cretaceous. Geological Journal Special Issue no. 5. Liverpool: Seel House Press, 448 pp.Google Scholar
corvalán, J. 1959. El Titoniano de Rio Lenas, Prov. de O'Higgins. Con una revisión de Titoniano y Neocomiano de la parte chilena del Geosinclinal Andino. Boletin del Instituto de Investigaciónes Geológicas, Chile 3, 165.Google Scholar
Crame, J. A. 1981. The occurrence of Anopaea (Bivalvia: Inoceramidae) in the Antarctic Peninsula. Journal of Molluscan Studies 47, 206–19.Google Scholar
Crame, J. A. 1982 a. Late Jurassic inoceramid bivalves from the Antarctic Peninsula and their stratigraphic use. Palaeontology 25, 555603.Google Scholar
Crame, J. A. 1982 b. Late Mesozoic bivalve biostratigraphy of the Antarctic Peninsula region. Journal of the Geological Society of London 139, 771–8.CrossRefGoogle Scholar
Crame, J. A. 1983. Cretaceous inoceramid bivalves from Antarctica. In Antarctic Earth Science (ed. Oliver, R. L. James, P. R. Jago, J. B.), pp. 298302. Cambridge: Cambridge University Press.Google Scholar
Crame, J. A. 1984. Preliminary bivalve zonation of the Jurassic–Cretaceous boundary in Antarctica. In III Congreso Latinoamericano de Paleontología, México, 1984 (ed. Perilliat, M. de C.), pp. 242–54. Mexico City: Universidad Nacional Autónoma de Mexico.Google Scholar
Crame, J. A. 1985 a. New late Jurassic oxytomid bivalves from the Antarctic Peninsula region. Bulletin of the British Antarctic Survey 69, 3555.Google Scholar
Crame, J. A. 1985 b. Lower Cretaceous inoceramid bivalves from the Antarctic Peninsula region. Palaeontology 28, 475525.Google Scholar
Crame, J. A. in press. Late Mesozoic bivalve biogeography of Antarctica. In Proceedings of Sixth Gondwana Symposium. Columbus, Ohio.Google Scholar
Creber, G. T. & Chaloner, W. G. 1984. Influence of environmental factors on the wood structure of living and fossil trees. Botanical Review 50, 357448.CrossRefGoogle Scholar
Dagis, A. S. & Zakharov, V. A. (eds) 1974. Mesozoic Palaeobiogeography of the North of Eurasia. Novosibirsk: ‘Nauka’, Siberian Branch, 196 pp. (in Russian).Google Scholar
Darlington, P. J. 1965. Biogeography at the Southern End of the World. Cambridge, Mass.: Harvard University Press, 236 pp.CrossRefGoogle Scholar
Darwin, C. 1872. The Origin of Species, 6th ed. London: John Murray, 458 pp.Google Scholar
Day, R. W. 1969. The Lower Cretaceous of the Great Artesian Basin. In Stratigraphy and Palaeontology. Essays in Honour of Dorothy Hill (ed. Campbell, K. S. W.), pp. 140–73. Canberra: Australian National University Press.Google Scholar
Dilley, F. C. 1971. Cretaceous foraminiferal biogeography. In Faunal Provinces in Space and Time (eds Middlemiss, F. A. Rawson, P. F. Newall, G.), pp. 169–90. Geological Journal Special Issue no. 4. Liverpool: Seel House Press.Google Scholar
Doyle, P. 1985. ‘Indian’ belemnites from the Albian (Lower Cretaceous) of James Ross Island, Antarctica. Bulletin of the British Antarctic Survey 69, 2334.Google Scholar
Ekman, S. 1953. Zoogeography of the Sea. London: Sidgwick & Jackson, 417 pp.Google Scholar
Enay, R. 1972. Paléobiogéographie des ammonites du Jurassique terminal (Tithonique s.l./Volgien s.l./Portlandien s.l.) et mobilité continentale. Geobios 5, 355407.CrossRefGoogle Scholar
Enay, R. 1973. Upper Jurassic (Tithonian) ammonites. In Atlas of Palaeobiogeography (ed. Hallam, A.), pp. 297307. Amsterdam: Elsevier.Google Scholar
Fleming, C. A. 1967. Biogeographic change related to Mesozoic orogenic history in the south-west Pacific. Tectonophysics 3, 419–27.CrossRefGoogle Scholar
Frakes, L. A. 1979. Climates Throughout Geologic Time. Amsterdam: Elsevier, 310 pp.Google Scholar
Freneix, S. 1981. Faunes de bivalves du Sénonien de Nouvelle-Calédonie. Analyses paléobiogéographique, biostratigraphique, paléoécologique. Annales de paléontologie (Invertébrés) 67, 1332.Google Scholar
FÜrsich, F. T. & Sykes, R. M. 1977. Palaeobiogeography of the European Boreal Realm during Oxfordian (Upper Jurassic) times: a quantitative approach. Neues Jahrbuch für Geologie und Paläontologie. Abhandlungen 155, 137–61.Google Scholar
Gordon, W. A. 1970. Biogeography of Jurassic Foraminifera. Bulletin of the Geological Society of America 81, 16891704.CrossRefGoogle Scholar
Gordon, W. A. 1974. Physical controls on marine biotic distribution in the Jurassic period. In Paleogeographic Provinces and Provinciality (ed. Ross, C. A.), pp. 136–47. Society of Economic Paleontologists and Mineralogists Special Publication no. 21. Tulsa, Oklahoma.CrossRefGoogle Scholar
Gould, S. J. 1980. The promise of paleobiology as a nomothetic, evolutionary discipline. Paleobiology 6, 96118.CrossRefGoogle Scholar
Hallam, A. 1969. Faunal realms and facies in the Jurassic. Palaeontology 12, 118.Google Scholar
Hallam, A. 1971. Provinciality in Jurassic faunas in relation to facies and palaeogeography. In Faunal Provinces in Space and Time (ed. Middlemiss, F. A. Rawson, P. F. Newall, G.), pp. 129–52. Geological Journal Special Issue no. 4. Liverpool: Seel House Press.Google Scholar
Hallam, A. 1975. Jurassic Environments. Cambridge: Cambridge University Press, 269 pp.Google Scholar
Hallam, A. 1977. Jurassic bivalve biogeography. Paleobiology 3, 5873.CrossRefGoogle Scholar
Hallam, A. 1984. Distribution of fossil marine invertebrates in relation to climate. In Fossils and Climate (ed. Brenchley, P.), pp. 107–25. Chichester: John Wiley.Google Scholar
Hallam, A. 1985. A review of Mesozoic climates. Journal of the Geological Society of London 142, 433–45.CrossRefGoogle Scholar
Hayami, I. 1975. A systematic survey of the Mesozoic Bivalvia from Japan. Bulletin, University Museum, University of Tokyo 10, 249 pp.Google Scholar
Hayami, I. 1984. Jurassic marine bivalve faunas and biogeography in southeast Asia. In Geology and Palaeontology of Southeast Asia 25 (ed. Kobayashi, T., Toriyami, R. & Hashimoto, W.), pp. 229–37. Tokyo: University of Tokyo Press.Google Scholar
HöLder, H. 1979. Jurassic. In Treatise on Invertebrate Paleontology, Part A Introduction. Fossilization (Taphonomy), Biogeography and Biostratigraphy (ed. Robison, R. A. Teichert, C.), pp. A390–A417. Boulder, Colorado & Lawrence, Kansas: Geological Society of America Inc. & University of Kansas.Google Scholar
Imlay, R. W. 1965. Jurassic marine faunal differentiation in North America. Journal of Paleontology 39, 1023–38.Google Scholar
Jeletzky, J. A. 1965. Late Jurassic and early Lower Cretaceous fossil zones of the Canadian Western Cordillera, British Columbia. Bulletin Geological Survey of Canada 103, 70 pp.Google Scholar
Jeletzky, J. A. 1971. Marine Cretaceous biotic provinces of western and arctic Canada. Proceedings of the North American Paleontological Convention 1969, pt. L, 1638–59.Google Scholar
Jeletzky, J. A. 1984. Jurassic–Cretaceous boundary beds of western and arctic Canada and the problem of the Tithonian–Berriasian stages in the Boreal realm. In Jurassic–Cretaceous Biochronology and Paleogeography of North America (ed. Westermann, G. E. G.), pp. 175255. Special Paper of the Geological Association of Canada no. 27.Google Scholar
Jones, D. L. & Plafker, G. 1976. Mesozoic megafossils from DSDP Hole 327A and Site 330 on the eastern Falkland Plateau. Initial Reports of the Deep Sea Drilling Programme 36, 845–55.Google Scholar
Kapitsa, A. A. 1978. New species of Lower Cretaceous inoceramids from Lower Priamur. In Biostratigraphy of the South of the Far East (Phanerozoic) (ed. Poyarkova, Z. N.), pp. 6577. Vladivostok: DVNTS Akad. Nauk. (in Russian).Google Scholar
Kauffman, E. G. 1973. Cretaceous Bivalvia. In Atlas of Palaeobiogeography (ed. Hallam, A.), pp. 353–83. Amsterdam: Elsevier.Google Scholar
Kauffman, E. G. 1976. Deep-sea Cretaceous macrofossils: Hole 317A, Manihiki Plateau. Initial Reports of the Deep Sea Drilling Programme 33, 503–35.Google Scholar
Kelly, S. R. A. 1984. Bivalvia of the Spilsby Sandstone and Sandringham Sands (late Jurassic–early Cretaceous) of eastern England, Part 1. Monograph of the Palaeontographical Society, London, 94 pp.Google Scholar
Koschelkina, Z. V. 1963. Jurassic stratigraphy and bivalvia of the Vilyusk syncline and Verkhoyansk depression. Trudў severo-vostokhogo kompleksnogo nauchno-issledovatel'skogo Instituta Magadan 5, 220 pp. (in Russian).Google Scholar
Koschelkina, Z. V. 1969. Inoceramidae of the Jurassic of the Okhotsk sea coast, western and eastern Prikolymian and Koryak upland. In Jurassic and Cretaceous Inocerams of the North-eastern USSR. Trudȳ severovostokhogo kompleksnogo nauchno-issledovatel'skogo Instituta Magadan 32 (ed. Shilo, N. A.), pp. 14117 (in Russian).Google Scholar
Lawver, L. A., Sclater, J. G. & Meinke, L. 1985. Mesozoic and Cenozoic reconstructions of the South Atlantic. Tectonophysics 114, 233–54.CrossRefGoogle Scholar
Macellari, C. E. 1979. La presencia del genero Aucellina (Bivalvia, Cretácico) en la Formación Hito XIX (Tierra del Fuego, Argentina). Ameghiniana 16, 143–72.Google Scholar
Macellari, C. E. 1985. Paleobiogeografía y edad de la fauna de Maorites-Gunnarites (Ammonoidea) del Cretácico Superior de la Antartida y Patagonia. Ameghiniana 21, 223–42.Google Scholar
Pergament, M. A. 1965. Inocerams and Cretaceous stratigraphy of the Pacific region. Trudȳ Instituta geologischeskikh nauk. Akademiya nauk SSSR 118, 102 pp. (in Russian).Google Scholar
Pimm, S. L. 1982. Food Webs. London: Chapman & Hall, 219 pp.CrossRefGoogle Scholar
Pimm, S. L. 1984. The complexity and stability of ecosystems. Nature, London 307, 321–6.CrossRefGoogle Scholar
Pokhialainen, V. P. 1974. Spreading of the Neocomian Pacific inoceramids. Trudȳ Instituta geologii i geofiziki Sibirskoe otdelenie, Akademiya nauk SSSR 80, 174–87 (in Russian).Google Scholar
Powell, A. W. B. 1965. Mollusca of antarctic and subantarctic seas. In Biogeography and Ecology in Antarctica (ed. van Mieghem, J., van Oye, P. and Schell, J.), pp. 333–80. The Hague: Dr W. Junk.CrossRefGoogle Scholar
Rawson, P. F. 1973. Lower Cretaceous (Ryazanian–Barremian) marine connections and cephalopod migrations between the Tethyan and Boreal Realms. In The Boreal Lower Cretaceous (ed. Casey, R., Rawson, P. F.), pp. 131–44. Geological Journal Special Issue no. 5. Liverpool: Seel House Press.Google Scholar
Rawson, P. F. 1981. Early Cretaceous ammonite biostratigraphy and biogeography. In The Ammonoidea (ed. House, M. R., Senior, J. R.), pp. 499529. London: Academic Press.Google Scholar
Saks, V. N. (ed.) 1975. The Jurassic–Cretaceous Boundary and the Berriasian Stage in the Boreal Realm. Jerusalem: Israel Program for Scientific Translations, 391 pp.Google Scholar
Scheibnerova, V. 1971. Foraminifera and their Mesozoic biogeoprovinces. Record of the Geological Survey of New South Wales 13, 135–74.Google Scholar
Smith, A. G. & Briden, J. C. 1977. Mesozoic and Cenozoic Paleocontinental Maps. Cambridge: Cambridge University Press, 63 pp.Google Scholar
Stanley, S. M. 1979. Macroevolution: Pattern and Process. San Francisco: W. H. Freeman, 332 pp.Google Scholar
Stanley, S. M. 1985. Rates of evolution. Paleobiology 11, 1326.CrossRefGoogle Scholar
Stehli, F. G., Douglas, R. G. & Newell, N. D. 1969. Generation and maintenance of gradients in taxonomic diversity. Science, New York 164, 947–9.CrossRefGoogle ScholarPubMed
Stevens, G. R. 1967. Upper Jurassic fossils from Ellsworth Land, West Antarctica, and notes on Upper Jurassic biogeography of the south Pacific region. New Zealand Journal of Geology and Geophysics 10, 345–93.CrossRefGoogle Scholar
Stevens, G. R. 1971. Relationship of isotopic temperatures and faunal realms to Jurassic–Cretaceous paleogeography, particularly of the south-west Pacific. Journal of the Royal Society of New Zealand 1, 145–58.CrossRefGoogle Scholar
Stevens, G. R. 1973. Cretaceous belemnites. In Atlas of Palaeobiogeography (ed. Hallam, A.), pp. 385401. Amsterdam: Elsevier.Google Scholar
Stevens, G. R. 1980. Southwest Pacific faunal palaeobiogeography in Mesozoic and Cenozoic times: a review. Palaeogeography, Palaeoclimatology, Palaeoecology 31, 153–96.CrossRefGoogle Scholar
Thomson, M. R. A. 1974. Ammonite faunas of the Lower Cretaceous of south-eastern Alexander Island. Scientific Report. British Antarctic Survey, No. 80, 44 pp.Google Scholar
Thomson, M. R. A. 1981. Mesozoic ammonite faunas of Antarctica and the break-up of Gondwana. In Gondwana Five (ed. Cresswell, M. M. Vella, P.), pp. 269–75. Rotterdam: A. A. Balkema.Google Scholar
Thomson, M. R. A. 1982. A comparison of the ammonite faunas of the Antarctic Peninsula and Magallanes Basin. Journal of the Geological Society of London 139, 763–70.CrossRefGoogle Scholar
Thomson, M. R. A. & Farquharson, G. W. 1984. Discovery and significance of the ammonite genus Favrella in the Antarctic Peninsula area. Bulletin of the British Antarctic Survey 62, 714.Google Scholar
Valentine, J. W. 1973. Evolutionary Paleoecology of the Marine Biosphere. Englewood Cliffs, New Jersey: Prentice-Hall, 511 pp.Google Scholar
Valentine, J. W. 1984. Neogene marine climate trends: Implications for biogeography and evolution of the shallow-sea biota. Geology 12, 647–50.2.0.CO;2>CrossRefGoogle Scholar
Weaver, C. 1931. Palaeontology of the Jurassic and Cretaceous of west central Argentina. Memoirs of the University of Washington 1, 1169.Google Scholar
Zakharov, V. A. 1966. Late Jurassic and Early Cretaceous Bivalve Molluscs of the North of Siberia and their Conditions of Life. Moscow: ‘Nauka’, 191 pp. (in Russian).Google Scholar
Zakharov, V. A. 1981. Buchiids and Biostratigraphy of the Boreal Upper Jurassic and Neocomian. Moscow: ‘Nauka’, 272 pp. (in Russian).Google Scholar
Zeiss, A. 1968. Untersuchungen zur Paläontologie der Cephalopoden des Unter-Tithon der Südlichen Frankenalb. Bayerische Akademie der Wissenschaften Mathematisch-Naturwissenschaftliche Klasse, Abhandlungen, Neue Folge 132, 190 pp.Google Scholar