Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-23T20:49:28.293Z Has data issue: false hasContentIssue false

Late Cambrian – Early Ordovician magmatism in the Sierra de Pie de Palo, Sierras Pampeanas (Argentina): implications for the early evolution of the proto-Andean margin of Gondwana

Published online by Cambridge University Press:  18 July 2019

Carlos D. Ramacciotti*
Affiliation:
Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611, Ciudad Universitaria, X5016CA Córdoba, Argentina Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de investigaciones en Ciencias de la Tierra (CICTERRA), Haya de la Torre s/n, Ciudad Universitaria, Córdoba, Argentina
César Casquet
Affiliation:
Departamento de Mineralogía y Petrología, Facultad de Ciencias Geológicas, Instituto de Geociencias(IGEO, CSIC), Universidad Complutense, 28040 Madrid, Spain
Edgardo G. Baldo
Affiliation:
Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611, Ciudad Universitaria, X5016CA Córdoba, Argentina Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de investigaciones en Ciencias de la Tierra (CICTERRA), Haya de la Torre s/n, Ciudad Universitaria, Córdoba, Argentina
Pablo H. Alasino
Affiliation:
Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja (Prov. de La Rioja-UNLaR-SEGEMAR-UNCa-CONICET), Entre Ríos y Mendoza s/n, Anillaco 5301, Argentina Instituto de Geología y Recursos Naturales, Centro de Investigación e Innovación Tecnológica, Universidad Nacional de La Rioja (INGeReN-CENIIT-UNLaR), Avenida Gobernador Vernet y Apostol Felipe, 5300, La Rioja, Argentina
Carmen Galindo
Affiliation:
Departamento de Mineralogía y Petrología, Facultad de Ciencias Geológicas, Instituto de Geociencias(IGEO, CSIC), Universidad Complutense, 28040 Madrid, Spain
Juan A. Dahlquist
Affiliation:
Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611, Ciudad Universitaria, X5016CA Córdoba, Argentina Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de investigaciones en Ciencias de la Tierra (CICTERRA), Haya de la Torre s/n, Ciudad Universitaria, Córdoba, Argentina
*
Author for correspondence: Carlos D. Ramacciotti, Email: [email protected]

Abstract

The Sierra de Pie de Palo, in the Argentinean Sierras Pampeanas (Andean foreland), consists of a Mesoproterozoic basement and an Ediacaran – upper Cambrian sedimentary cover that underwent folding, thrusting and metamorphism during the Ordovician Famatinian orogeny. Mafic rocks and granitoids of the easternmost Sierra de Pie de Palo provide information about the magmatic activity at the proto-Andean margin of Gondwana during late Cambrian – Early Ordovician time. Magmatic activity began in the Sierra de Pie de Palo as dykes, sills and small intrusions of tholeiitic gabbros between 490 and 470 Ma, before shortening and regional metamorphism. Variable mantle sources (Nd depleted mantle age, TDM between 1.7 and 1.3 Ga) were involved in the mafic magmatism. Nd-isotope signatures were probably inherited from a Mesoproterozoic subcontinental mantle. Mafic magmatism was coincident with collapse of a Cambrian carbonate-siliciclastic platform that extended along SW Gondwana, and was probably coeval with the beginning of subduction. After mafic magmatism, peraluminous granitoids were emplaced in the Sierra de Pie de Palo along ductile shear zones during a contractional tectonic phase, coeval with moderate to high P/T metamorphism, and with the Cordilleran-type magmatic arc that resulted from a flare-up at c. 470 Ma. Granitoids resulted mainly from partial melting of metasedimentary rocks, although some hybridization with juvenile magmas and/or rocks cannot be ruled out. The evidence shown here further implies that the Pie de Palo block was part of the continental upper plate during the Famatinian subduction, and not an exotic block that collided with the Gondwana margin.

Type
Original Article
Copyright
© Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aceñolaza, GF and Toselli, AJ (1973) Consideraciones estratigráficas y tectónicas sobre el Paleozoico Inferior del Noroeste Argentino. In 2º Congreso Latinoamericano de Geología, Caracas, 11–16 November, pp. 755–64.Google Scholar
Alasino, PH, Casquet, C, Pankhurst, RJ, Rapela, CW, Dahlquist, JA, Galindo, C, Larrovere, MA, Recio, C, Paterson, SR, Colombo, F and Baldo, EG (2016) Mafic rocks of the Ordovician Famatinian magmatic arc (NW Argentina): new insights into the mantle contribution. Geological Society of America Bulletin 128, 1105–20, doi: 10.1130/B31417.1.CrossRefGoogle Scholar
Astini, RA, Benedetto, JL and Vaccari, NE (1995) The early Paleozoic evolution of the Argentine Precordillera as a Laurentian rifted, drifted and collided terrane: a geodynamic model. Geological Society of America Bulletin 107, 253–73, doi: 10.1130/0016-7606(1995)107<0253:TEPEOT>2.3.CO;2.2.3.CO;2>CrossRefGoogle Scholar
Astini, RA and Dávila, FM (2004) Ordovician back arc foreland and Ocloyic thrust belt development on the western Gondwana margin as a response to Precordillera terrane accretion. Tectonics 23, 119, doi: 10.1029/2003TC001620.CrossRefGoogle Scholar
Bahlburg, H and Hervé, F (1997) Geodynamic evolution and tectonostratigraphic terranes of northwestern Geodynamic evolution and tectonostratigraphic terranes of northwestern Argentina and northern Chile. Geological Society of America Bulletin 109, 869–84, doi: 10.1130/0016-7606(1997)109<0869.2.3.CO;2>CrossRefGoogle Scholar
Baldo, EG, Casquet, C and Galindo, C (1998) Datos preliminares sobre el metamorfismo de la Sierra de Pie de Palo, Geogaceta 24, 39–43.Google Scholar
Baldo, EG, Casquet, C, Pankhurst, RJ, Galindo, C, Rapela, CW, Fanning, CM, Dahlquist, JA and Murra, J (2006) Neoproterozoic A-type magmatism in the Western Sierras Pampeanas (Argentina): evidence for Rodinia break-up along a proto-lapetus rift? Terra Nova 18, 388–94, doi: 10.1111/j.1365-3121.2006.00703.x.CrossRefGoogle Scholar
Baldo, EG, Dahlquist, JA, Casquet, C, Rapela, CW, Pankhurst, RJ, Galindo, C and Fanning, CM (2012) Ordovician peraluminous granites in the Sierra de Pie de Palo, Western Sierras Pampeanas of Argentina: Geotectonic Implications. In VIII Congreso Geológico de España (eds Fernández, LP, Fernández, A, Cuesta, A and Bahamonde, JR), pp. 1907–10. Oviedo, España: CD anexo a Geo-Temas 13.Google Scholar
Bellahsen, N, Sebrier, M and Siame, L (2016) Crustal shortening at the Sierra Pie de Palo (Sierras Pampeanas, Argentina): near-surface basement folding and thrusting. Geological Magazine 153, 992–12, doi: 10.1017/S0016756816000467.CrossRefGoogle Scholar
Borello, AV (1969) Los geosinclinales de la Argentina: Buenos Aires, Dirección Nacional de Geología y Minería. Anales 14, 136.Google Scholar
Büttner, SH, Glodny, J, Lucassen, F, Wemmer, K, Erdmann, S, Handler, R and Franz, G (2005) Ordovician metamorphism and plutonism in the Sierra de Quilmes metamorphic complex: Implications for the tectonic setting of the northern Sierras Pampeanas (NW Argentina). Lithos 83, 143–81, doi: 10.1016/j.lithos.2005.01.006.CrossRefGoogle Scholar
Casquet, C, Baldo, EG, Pankhurst, RJ, Rapela, CW, Galindo, C, Fanning, CM and Saavedra, J (2001) Involvement of the Argentine Precordillera terrane in the Famatinian mobile belt: U-Pb SHRIMP and metamorphic evidence from the Sierra de Pie de Palo. Geology 29, 703–06, doi: 10.1130/0091-7613(2001)029<0703:IOTAPT>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Casquet, C, Pankhurst, RJ, Rapela, CW, Galindo, C, Fanning, CM, Chiaradia, M, Baldo, EG, González-Casado, JM and Dahlquist, JA (2008) The Mesoproterozoic Maz terrane in the Western Sierras Pampeanas, Argentina, equivalent to the Arequipa-Antofalla block of southern Peru? Implications for West Gondwana margin evolution. Gondwana Research 13, 163–75, doi: 10.1016/j.gr.2007.04.005.CrossRefGoogle Scholar
Casquet, C, Fanning, CM, Galindo, C, Pankhurst, RJ, Rapela, CW and Torres, P (2010) The Arequipa Massif of Peru: New SHRIMP and isotope constraints on a Paleoproterozoic inlier in the Grenvillian orogen. Journal of South American Earth Sciences 29, 128–42, doi: 10.1016/j.jsames.2009.08.009.CrossRefGoogle Scholar
Casquet, C, Rapela, CW, Pankhurst, RJ, Baldo, EG, Galindo, C, Fanning, CM and Dahlquist, JA (2012) Fast sediment underplating and essentially coeval juvenile magmatism in the Ordovician margin of Gondwana, Western Sierras Pampeanas, Argentina. Gondwana Research 22, 664–73, doi: 10.1016/j.gr.2012.05.001.CrossRefGoogle Scholar
Cawood, PA (2005) Terra Australis Orogen: Rodinia breakup and development of the Pacific and Iapetus margins of Gondwana during the Neoproterozoic and Paleozoic. Earth-Science Reviews 69, 249–79, doi: 10.1016/j.earscirev.2004.09.001.CrossRefGoogle Scholar
Cawood, PA, Kroner, A, Collins, WJ, Kusky, TM, Mooney, WD and Windley, BF (2009) Accretionary orogens through Earth history. In Earth Accretionary Systems in Space and Time (eds Cawood, PA and Kröner, A), pp. 136. Geological Society, London, Special Publications no. 318, doi: 10.1144/SP318.1.CrossRefGoogle Scholar
Chappell, BW and White, JR (2001) Two contrasting granite types: 25 years later. Australian Journal of Earth Sciences 48, 489–99, doi: 10.1046/j.1440-0952.2001.00882.x.CrossRefGoogle Scholar
Chew, DM, Schaltegger, U, Košler, J, Whitehouse, MJ, Gutjahr, M, Spikings, RA and Miškovic, A (2007) U-Pb geochronologic evidence for the evolution of the Gondwanan margin of the north-central Andes. Journal of the Geological Society, London 119, 697–11, doi: 10.1130/B26080.1.Google Scholar
Coira, B, Koukharsky, M, Guevara, SR and Cisterna, CE (2009) Puna (Argentina) and northern Chile Ordovician basic magmatism: a contribution to the tectonic setting. Journal of South American Earth Sciences 27, 2435, doi: 10.1016/j.jsames.2008.10.002.CrossRefGoogle Scholar
Cristofolini, EA, Otamendi, JE, Ducea, MN, Pearson, DM, Tibaldi, AM and Baliani, I (2012) Detrital zircon U-Pb ages of metasedimentary rocks from Sierra de Valle Fértil: Entrapment of Middle and Late Cambrian marine successions in the deep roots of the Early Ordovician Famatinian arc. Journal of South American Earth Sciences 37, 7794, doi: 10.1016/j.jsames.2012.02.001.CrossRefGoogle Scholar
Dahlquist, JA, Galindo, C, Pankhurst, RJ, Rapela, CW, Alasino, PH, Saavedra, J and Fanning, CM (2007) Magmatic evolution of the Peñón Rosado granite: Petrogenesis of garnet-bearing granitoids, Lithos 95, 177–07, doi: 10.1016/j.lithos.2006.07.010.CrossRefGoogle Scholar
Dahlquist, JA, Pankhurst, RJ, Gaschnig, RM, Rapela, CW, Casquet, C, Alasino, PH, Galindo, C and Baldo, EG (2013) Hf and Nd isotopes in Early Ordovician to Early Carboniferous granites as monitors of crustal growth in the Proto-Andean margin of Gondwana. Gondwana Research 23, 1617–30, doi: 10.1016/j.gr.2012.08.013.CrossRefGoogle Scholar
Dahlquist, JA, Pankhurst, RJ, Rapela, CW, Galindo, C, Alasino, PH, Fanning, CM, Saavedra, J and Baldo, EG (2008) New SHRIMP U-Pb data from the Famatina Complex: Constraining Early-Mid Ordovician Famatinian magmatism in the Sierras Pampeanas, Argentina. Geologica Acta 6, 319–33, doi: 10.1344/105.000000260.Google Scholar
Dahlquist, JA, Rapela, CW and Baldo, EG (2005) Petrogenesis of cordierite-bearing S-type granitoids in Sierra de Chepes, Famatinian orogen, Argentina. Journal of South American Earth Sciences 20, 231–51, doi: 10.1016/j.jsames.2005.05.014.CrossRefGoogle Scholar
De Paolo, DJ, Linn, AM and Schubert, G (1991) The continental crustal age distribution: Methods of determining mantle separation ages from Sm-Nd isotopic data and application to the southwestern United States. Journal of Geophysical Research 96, 2071–88, doi: 10.1029/90JB02219.CrossRefGoogle Scholar
Drobe, M, López de Luchi, M Steenken, A, Wemmer, K, Naumann, R, Frei, R and Siegesmund, S (2011) Geodynamic evolution of the Eastern Sierras Pampeanas (Central Argentina) based on geochemical, Sm-Nd, Pb-Pb and SHRIMP data. International Journal of Earth Sciences 100, 631–57, doi: 10.1007/s00531-010-0593-3.CrossRefGoogle Scholar
Ducea, MN, Bergantz, GW, Crowley, JL and Otamendi, JE (2017) Ultrafast magmatic buildup and diversification to produce continental crust during subduction. Geology 45, 235238, doi: 10.1130/G38726.1.CrossRefGoogle Scholar
Ducea, MN, Otamendi, JE, Bergantz, GW, Jianu, D and Petrescu, L (2015) The origin and petrologic evolution of the Ordovician Famatinian-Puna arc. In Geodynamics of a Cordilleran Orogenic System: The Central Andes of Argentina and Northern Chile (eds DeCelles, PG, Ducea, MN, Carrapa, B and Kapp, PA), pp. 125–38. Geological Society of America, Boulder, Memoir no. 212, doi:10.1130/2015.1212(07).CrossRefGoogle Scholar
Ducea, MN, Otamendi, JE, Bergantz, GW, Stair, KM, Valencia, VA and Gehrels, GE (2010) Timing constraints on building an intermediate plutonic arc crustal section: U-Pb zircon geochronology of the Sierra Valle Fértil-La Huerta, Famatinian arc, Argentina. Tectonics 29, TC4002, doi: 10.1029/2009TC002615.CrossRefGoogle Scholar
Ducea, MN, Seclaman, AC, Murray, KE, Jianu, D and Schoenbohm, LM (2013) Mantle-drip magmatism beneath the Altiplano-Puna Plateau, Central Andes. Geology 41, 915–18, doi: 10.1130/G34509.1.CrossRefGoogle Scholar
Faure, G (2001) Origin of Igneous Rocks: The Isotopic Evidence. Heidelberg: Springer-Verlag, 496 p. doi: 10.1007/978-3-662-04474-2.CrossRefGoogle Scholar
Finger, F and Schiller, D (2012) Lead contents of S-type granites and their petrogenetic significance. Contribution to Mineralogy Petrology 164, 747–55, doi:10.1007/s00410-012-0771-3.CrossRefGoogle Scholar
Finney, SC (2007) The parautochthonous Gondwanan origin of the Cuyania (greater Precordillera) terrane of Argentina: a re-evaluation of evidence used to support an allochthonous Laurentian origin. Geologica Acta 5, 127–58.Google Scholar
Galindo, C, Casquet, C, Rapela, CW, Pankhurst, RJ, Baldo, EG and Saavedra, J (2004) Sr, C and O isotope geochemistry and stratigraphy of Precambrian and lower Paleozoic carbonate sequences from the Western Sierras Pampeanas of Argentina: Tectonic implications. Precambrian Research 131, 5571, doi: 10.1016/j.precamres.2003.12.007.CrossRefGoogle Scholar
Gallien, F, Mogessie, A, Bjerg, E, Delpino, S, Castro de Machuca, B, Thöni, M and Klötzli, U (2010) Timing and rate of granulite facies metamorphism and cooling from multi-mineral chronology on migmatitic gneisses, Sierras de La Huerta and Valle Fértil NW Argentina. Lithos 114, 229–52, doi: 10.1016/j.lithos.2009.08.011.CrossRefGoogle Scholar
Gallien, F, Mogessie, A, Hauzenberger, CA, Bjerg, E, Delpino, S and Castro de Machuca, B (2012) On the origin of multi-layer coronas between olivine and plagioclase at the gabbro-granulite transition, Valle Fértil-La Huerta Ranges, San Juan Province, Argentina. Journal of Metamorphic Geology 30, 281–02, doi: 10.1111/j.1525-1314.2011.00967.x.CrossRefGoogle Scholar
Garber, JM, Roeske, SM, Warren, J, Mulcahy, SR, McClelland, WC, Austin, LJ, Renne, PR and Vujovich, GI (2014) Crustal shortening, exhumation, and strain localization in a collisional orogen: The Bajo Pequeño Shear Zone, Sierra de Pie de Palo, Argentina. Tectonics 33, 1277–03, doi: 10.1002/2013TC003477.CrossRefGoogle Scholar
Goldstein, SL, O’Nions, RK and Hamilton, PJ (1984) A Sm-Nd study of atmospheric dust and particles from major river systems. Earth and Planetary Science Letters 70, 221–36.CrossRefGoogle Scholar
Grant, ML, Wilde, SA, Wu, F and Yang, J (2009) The application of zircon cathodoluminescence imaging, Th–U–Pb chemistry and U–Pb ages in interpreting discrete magmatic and high-grade metamorphic events in the North China Craton at the Archean/Proterozoic boundary. Chemical Geology 261, 155–71, doi: 10.1016/j.chemgeo.2008.11.002.CrossRefGoogle Scholar
Greco, GA, González, PD, González, SN, Sato, AM, Basei, MAS, Tassinari, CCG, Sato, K, Varela, R and Llambías, EJ (2015) Geology, structure and age of the Nahuel Niyeu Formation in the Aguada Cecilio area, North Patagonian Massif, Argentina. Journal of South American Earth Sciences 62, 1232, doi: 10.1016/j.jsames.2015.04.005.CrossRefGoogle Scholar
Greco, GA, González, SN, Sato, AM, González, PD, Basei, MAS, Llambías, EJ and Varela, R (2017) The Nahuel Niyeu basin: A Cambrian forearc basin in the eastern North Patagonian Massif. Journal of South American Earth Sciences 79, 111–36, doi: 10.1016/j.jsames.2017.07.009.CrossRefGoogle Scholar
Grosse, P, Bellos, LI, de los Hoyos, CR, Larrovere, MA, Rossi, JN and Toselli, AJ (2011) Across-arc variation of the Famatinian magmatic arc (NW Argentina) exemplified by I-, S- and transitional I/S-type Early Ordovician granitoids of the Sierra de Velasco. Journal of South American Earth Sciences 32, 110–26, doi: 10.1016/j.jsames.2011.03.014.CrossRefGoogle Scholar
Haak, U, Heinrichs, H, Boneß, M and Schneider, A (1984) Loss of metals from pelites during regional metamorphism. Contribution to Mineralogy and Petrology 85, 116–32.CrossRefGoogle Scholar
Huppert, HE, Stephen, R and Sparks, J (1985) Cooling and contamination of mafic and ultramafic magmas during ascent through continental crust. Earth and Planetary Science Letters 74, 371–86, doi: 10.1016/S0012-821X(85)80009-1.CrossRefGoogle Scholar
Inger, S and Harris, N (1993) Leucogranite magmatism in the Langtang Valley. Journal of Petrology 34, 345–68.CrossRefGoogle Scholar
Jacobsen, SB and Wasserburg, GJ (1980) Sm-Nd isotopic evolution of chondrites, Earth and Planetary Science Letters 50, 139–55.CrossRefGoogle Scholar
Jerram, DA and Martin, VM (2008) Understanding crystal populations and their significance through the magma plumbing system. In Dynamics of Crustal Magma Transfer, Storage and Differentiation (eds Annen, C and Zellmer, GF), pp. 133–48. Geological Society of London, Special Publications no. 304, doi: 10.1144/SP304.7.CrossRefGoogle Scholar
Jordan, TE and Allmendinger, RW (1986) The Sierras Pampeanas of Argentina: a modern analogue of Rocky Mountain foreland deformation. American Journal of Science 286, 737–64, doi: 10.2475/ajs.286.10.737.CrossRefGoogle Scholar
Kopp, H (2013) Invited review paper: The control of subduction zone structural complexity and geometry on margin segmentation and seismicity. Tectonophysics 589, 1–16, doi: 10.1016/j.tecto.2012.12.037.CrossRefGoogle Scholar
Lee, C-TA (2014) Physics and chemistry of deep continental crust recycling. In Treatise on Geochemistry (2nd ed.), Volume 4 (eds Holland, H and Turekian, K), pp. 423–56. Elsevier. doi: 10.1016/B978-0-08-095975-7.00314-4.CrossRefGoogle Scholar
Lee, C-TA, Luffi, P, Le Roux, V, Dasgupta, R, Albaréde, F and Leeman, WP (2010) The redox state of arc mantle using Zn/Fe systematics. Nature 468, 681–85, doi: 10.1038/nature09617.CrossRefGoogle ScholarPubMed
Linner, M (1993) Zur Geochemie der Paragneise in der Monotonen Serie. Mitteilungen der Österreichischen Mineralogischen Gesellschaft 138, 223–25.Google Scholar
Liu, C-Z, Wu, F-Y, Chung, S-L, Sun, W-D and Ji, WQ (2014) A ‘hidden’ 18O-enriched reservoir in the sub-arc mantle. Scientific Reports 4, 4232, doi: 10.1038/srep04232.CrossRefGoogle ScholarPubMed
Loewy, SL, Connelly, JN and Dalziel, IWD (2004) An orphaned basement block: The Arequipa-Antofalla Basement of the central Andean margin of South America. Geological Society of America Bulletin 116, 171–87, doi: 10.1130/B25226.1.CrossRefGoogle Scholar
Ludwig, KR (2003) Isoplot/Ex version 3.0: A Geochronological Toolkit for Microsoft Excel. Berkeley, California: Berkeley Geochronology Center, Special Publication No. 4Google Scholar
Lugmair, GW and Carlson, RW (1978) The Sm-Nd history of KREEP. In Proceedings of 9th Lunar and Planetary Science Conference, Houston, 13–17 March, 689–04.Google Scholar
Lugmair, GW and Marti, K (1978) Lunar initial 143Nd/144 Nd: differential evolution of the lunar crust and mantle. Earth and Planetary Science Letters 39, 349–57.CrossRefGoogle Scholar
Malavieille, J and Trullenque, G (2009) Consequences of continental subduction on forearc basin and accretionary wedge deformation in SE Taiwan: Insights from analogue modeling. Tectonophysics 466, 377–94, doi: 10.1016/j.tecto.2007.11.016.Google Scholar
Mannheim, R and Miller, H (1996) Las rocas volcánicas y subvolcánicas eopaleozoicas del Sistema de Famatina. Münchner Geologische Hefte 19A, 159–86.Google Scholar
Marshall, V, Knesel, K and Bryan, SE (2011) Zircon chronochemistry of high heat-producing granites in Queensland and Europe. In Australian Geothermal Energy Conference (ed. Budd, A), Sydney, Australia, 16–18 November, pp. 157–64.Google Scholar
McDonough, WF and Sun, S (1995) The composition of the Earth. Chemical Geology 120, 223–53.CrossRefGoogle Scholar
Meschede, M (1986) A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chemical Geology 56, 207–18, doi: 10.1016/0009-2541(86)90004-5.CrossRefGoogle Scholar
Michard, A, Gurriet, P, Soudant, M and Abarede, F (1985) Nd isotopes in French Phanerozoic shales: external vs internal aspect of crust evolution. Geochimica and Cosmochimica Acta 49, 601–10.CrossRefGoogle Scholar
Miyashiro, A (1974) Volcanic rock series in island arcs and active continental margins. American Journal of Science 274, 321–55.CrossRefGoogle Scholar
Morata, D, Castro de Machuca, B, Arancibia, G, Pontoriero, S and Fanning, CM (2010) Peraluminous Grenvillian TTG in the Sierra de Pie de Palo, Western Sierras Pampeanas, Argentina: Petrology, geochronology, geochemistry and petrogenetic implications. Precambrian Research 177, 308–22, doi: 10.1016/j.precamres.2010.01.001.CrossRefGoogle Scholar
Mulcahy, SR, Roeske, SM, McClelland, WC, Ellis, JR, Jourdan, F, Renne, PR, Vervoort, JD and Vujovich, GI (2014) Multiple migmatite events and cooling from granulite facies metamorphism within the Famatina arc margin of northwest Argentina. Tectonics 33, 125, doi: 10.1002/2013TC003398.CrossRefGoogle Scholar
Mulcahy, SR, Roeske, SM, McClelland, WC, Jourdan, F, Iriondo, A, Renne, PR, Vervoort, JD and Vujovich, GI (2011) Structural evolution of a composite middle to lower crustal section: The Sierra de Pie de Palo, northwest Argentina. Tectonics 30, doi: 10.1029/2009TC002656.CrossRefGoogle Scholar
Mulcahy, SR, Roeske, SM, McClelland, WC, Nomade, S and Renne, PR (2007) Cambrian initiation of the Las Pirquitas thrust of the western Sierras Pampeans, Argentina: Implications for the tectonic evolution of the proto-Andean margin of South America. Geology 35, 443–46, doi: 10.1130/G23436A.1.CrossRefGoogle Scholar
Murra, JA and Baldo, EG (2006) Evolución tectonotermal ordovícica del borde occidental del arco magmático Famatiniano: metamorfismo de las rocas máficas y ultramáficas de la Sierra de la Huerta-de Las Imanas (Sierras Pampeanas, Argentina). Revista geológica de Chile 33, 277–98, doi: 10.4067/S0716-02082006000200004.CrossRefGoogle Scholar
Murray, KE, Ducea, MN and Schoenbohm, L (2015) Foundering-driven lithospheric melting: The source of central Andean mafic lavas on the Puna Plateau (22°S–27°S). In Geodynamics of a Cordilleran Orogenic System: The Central Andes of Argentina and Northern Chile (eds DeCelles, PG, Ducea, MN, Carrapa, B and Kapp, PA), pp. 139–66. Geological Society of America, Boulder, Memoir no. 212.Google Scholar
Nabelek, PI and Bartlett, CD (1998) Petrologic and geochemical links between the post-collisional Proterozoic Harney Peak leucogranite, South Dakota USA, and its source rocks. Lithos 45, 71–85.CrossRefGoogle Scholar
Naipauer, M, Cingolani, CA, Vujovich, GI and Chemale, F (2010) Geochemistry of Neoproterozoic-Cambrian metasedimentary rocks of the Caucete Group, Sierra de Pie de Palo, Argentina: Implications for their provenance. Journal of South American Earth Sciences 30, 84–96, doi: 10.1016/j.jsames.2010.03.002.CrossRefGoogle Scholar
Otamendi, JE, Ducea, MN and Bergantz, GW (2012) Geological, petrological and geochemical evidence for progressive construction of an arc crustal section, Sierra de Valle Fértil, Famatinian Arc, Argentina. Journal of Petrology 53, 761–00, doi: 10.1093/petrology/egr079.CrossRefGoogle Scholar
Otamendi, JE, Ducea, MN, Tibaldi, AM, Bergantz, GW, de la Rosa, JD and Vujovich, GI (2009) Generation of tonalitic and dioritic magmas by coupled partial melting of gabbroic and metasedimentary rocks within the deep crust of the Famatinian magmatic arc, Argentina. Journal of Petrology 50, 841–73, doi: 10.1093/petrology/egp022.CrossRefGoogle Scholar
Pankhurst, RJ and O’Nions, RK (1973) Determination of Rb/Sr and 87Sr/86Sr ratios of some standard rocks and evaluation of X-ray fluorescence spectrometry in Rb-Sr geochemistry. Chemical Geology 12, 127–36, doi: 10.1016/0009-2541(73)90110-1.CrossRefGoogle Scholar
Pankhurst, RJ and Rapela, CW (1998) The proto-Andean margin of Gondwana: an introduction. In The Proto-Andean Margin of Gondwana (eds Pankhurst, RJ and Rapela, WC), pp. 19. Geological Society of London, Special Publication no. 142.CrossRefGoogle Scholar
Pankhurst, RJ, Hervé, F, Fanning, CM, Calderón, M, Niemeyer, H, Griem-Klee, S and Soto, F (2016) The pre-Mesozoic rocks of northern Chile: U-Pb ages, and Hf and O isotopes. Earth-Science Reviews 152, 88–05, doi: 10.1016/j.earscirev.2015.11.009.CrossRefGoogle Scholar
Pankhurst, RJ, Rapela, CW and Fanning, CM (2000) Age and origin of coeval TTG, I- and S-type granites in the Famatinian belt of NW Argentina. Transactions of the Royal Society of Edinburgh: Earth Sciences 91, 151–68, doi: 10.1017/S0263593300007343.CrossRefGoogle Scholar
Pankhurst, RJ, Rapela, CW, Fanning, CM and Márquez, M (2006) Gondwanide continental collision and the origin of Patagonia. Earth-Science Reviews 76, 235–57, doi: 10.1016/j.earscirev.2006.02.001.CrossRefGoogle Scholar
Pankhurst, RJ, Rapela, CW, Lopez De Luchi, MG, Rapalini, AE, Fanning, CM and Galindo, C (2014) The Gondwana connections of northern Patagonia. Journal of the Geological Society of London 171, 313–28, doi: 10.1144/jgs2013-081.CrossRefGoogle Scholar
Pankhurst, RJ, Rapela, CW, Saavedra, J, Baldo, EG, Dahlquist, JA, Pascua, I and Fanning, CM (1998) The Famatinian magmatic arc in the central Sierras Pampeanas: an Early-to-Middle Ordovician continental arc on the Gondwana margin. In The Proto-Andean Margin of Gondwana (eds Pankhurst, RJ and Rapela, CW), pp. 343–67. Geological Society of London, Special Publication no. 142.CrossRefGoogle Scholar
Patiño Douce, AE (1999) What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? In Understanding Granites: Integrating New and Classical Techniques (eds Castro, A, Fernández, C and Vigneresse, JL), pp. 55–75. Geological Society of London, Special Publication no. 168.Google Scholar
Pearce, JA (1996) A user’s guide to basalt discrimination diagrams. In Trace Element Geochemistry of Volcanic Rocks: Applications for Massive Sulphide Exploration (ed Wyman, DA), pp. 79–13, St Johns: Geological Association of Canada, Short Course Notes, Vol. 12.Google Scholar
Pidgeon, RT and Compston, W (1992) A SHRIMP ion microprobe study of inherited and magmatic zircons from four Scottish Caledonian granites. Transactions of the Royal Society of Edinburgh: Earth Sciences 83, 473–83, doi: 10.1017/S0263593300008142.CrossRefGoogle Scholar
Ramacciotti, CD, Baldo, EG and Casquet, C (2015a) U-Pb SHRIMP detrital zircon ages from the Neoproterozoic Difunta Correa Metasedimentary Sequence (Western Sierras Pampeanas, Argentina): Provenance and paleogeographic implications. Precambrian Research 270, 3949, doi: 10.1016/j.precamres.2015.09.008.CrossRefGoogle Scholar
Ramacciotti, CD, Casquet, C, Baldo, EG and Galindo, C (2015b) The Difunta Correa metasedimentary sequence (NW Argentina): relict of a Neoproterozoic platform? Elemental and Sr-Nd isotope evidence. Revista Mexicana de Ciencias Geologicas 32, 395–14.Google Scholar
Ramacciotti, CD, Casquet, C, Baldo, EG, Galindo, C, Pankhurst, RJ, Verdecchia, SO, Rapela, CW and Fanning, MC (2018) A Cambrian mixed carbonate-siliciclastic platform in SW Gondwana: evidence from the Western Sierras Pampeanas (Argentina) and implications for the early Paleozoic paleogeography of the proto-Andean margin. International Journal of Earth Sciences 107, 2605–25, doi: 10.1007/s00531-018-1617-7.CrossRefGoogle Scholar
Ramos, VA (1988) Late Proterozoic-Early Paleozoic of South America – a collisional history. Episodes 11, 168–74.CrossRefGoogle Scholar
Ramos, VA (2004) Cuyania, an exotic block to Gondwana: Review of a historical success and the present problems. Gondwana Research 7, 1009–26, doi: 10.1016/S1342-937X(05)71081-9.CrossRefGoogle Scholar
Ramos, VA (2018) The Famatinian orogen along the protomargin of Western Gondwana: Evidence for a nearly continuous Ordovician magmatic arc between Venezuela and Argentina. In The Evolution of the Chilean-Argentinean Andes (eds Folguera, A, Reyes, E Contreras, Heredia, N, Encinas, A, Iannelli, BS, Oliveros, V, Dávila, FM, Collo, G, Giambiagi, L, Maksymowicz, A, Llanos, MP Iglesia, Turienzo, M, Naipauer, M, Orts, D, Litvak, VD, Alvarez, O and Arriagada, C), pp. 133–61. Switzerland: Springer.CrossRefGoogle Scholar
Ramos, VA, Dallmeyer, RD and Vujovich, GI (1998) Time constraints on the Early Paleozoic docking of the Precordillera, central Argentina. In The Proto-Andean Margin of Gondwana (eds Pankhurst, RJ and Rapela, CW), pp. 143–58. London: Geological Society of London, Special Publication no. 142.Google Scholar
Ramos, VA and Vujovich, GI (2000) Hoja Geológica 3169-VI. San Juan, 243. Boletín, Buenos Aires: Servicio Geológico Minero Argentino, 82 pp.Google Scholar
Rapela, CW (2000) El ambiente geotectónico del Ordovícico de la región del Famatina. Revista de la Asociacion Geologica Argentina 55, 134–36.Google Scholar
Rapela, CW, Pankhurst, RJ, Casquet, C, Baldo, EG, Galindo, C, Fanning, CM and Dahlquist, JA (2010) The Western Sierras Pampeanas: Protracted Grenville-age history (1330-1030 Ma) of intra-oceanic arcs, subduction-accretion at continental-edge and AMCG intraplate magmatism. Journal of South American Earth Sciences 29, 105–27, doi: 10.1016/j.jsames.2009.08.004.CrossRefGoogle Scholar
Rapela, CW, Pankhurst, RJ, Casquet, C, Baldo, EG, Saavedra, J and Galindo, C (1998) Early evoution of the Proto- Andean margin of South America. Geology 26, 707–10, doi: 10.1130/0091-7613(1998)026<0707:EEOTPA>2.3.CO.2.3.CO;2>CrossRefGoogle Scholar
Rapela, CW, Pankhurst, RJ, Casquet, C, Dahlquist, JA, Fanning, CM, Baldo, EG, Galindo, C, Alasino, PH, Ramacciotti, CD, Verdecchia, SO, Murra, JA and Basei, MAS (2018) A review of the Famatinian Ordovician magmatism in southern South America: evidence of lithosphere reworking and continental subduction in the early proto-Andean margin of Gondwana. Earth-Science Reviews 187, 259–85.CrossRefGoogle Scholar
Rapela, CW, Pankhurst, RJ, Casquet, C, Fanning, CM, Baldo, EG, González-Casado, JM, Galindo, C and Dahlquist, JA (2007) The Río de la Plata craton and the assembly of SW Gondwana. Earth-Science Reviews 83, 4982, doi: 10.1016/j.earscirev.2007.03.004.CrossRefGoogle Scholar
Rapela, CW, Pankhurst, RJ, Casquet, C, Fanning, CM, Galindo, C and Baldo, EG (2005) Datación U-Pb SHRIMP de circones detríticos en paranfibolitas neoproterozoicas de la secuencia Difunta Correa (Sierras Pampeanas Occidentales, Argentina). Geogaceta 38, 227–30.Google Scholar
Rapela, CW, Verdecchia, SO, Casquet, C, Pankhurst, RJ, Baldo, EG, Galindo, C, Murra, JA, Dahlquist, JA and Fanning, CM (2016) Identifying Laurentian and SW Gondwana sources in the Neoproterozoic to Early Paleozoic metasedimentary rocks of the Sierras Pampeanas: Paleogeographic and tectonic implications. Gondwana Research 32, 193–12, doi: 10.1016/j.gr.2015.02.010.CrossRefGoogle Scholar
Rene, M (2006) Provenance studies of Moldanubian paragneisses based on geochemical data (Bohemian Massif, Czech Republic). Neues Jahrbuch für Geologie Abhandlungen 242, 83–01.CrossRefGoogle Scholar
Rossi, JN, Toselli, AJ and Durand, FR (1992) Metamorfismo de baja presión, su relación con el desarrollo de la cuenca Puncoviscana, plutonismo y régimen tectónico. Estudios Geológicos 48, 279–87.CrossRefGoogle Scholar
Rubatto, D (2002) Zircon trace element geochemistry: distribution coefficients and the link between U-Pb ages and metamorphism. Chemical Geology 184, 123–38.CrossRefGoogle Scholar
Rubatto, D (2017) Zircon: The metamorphic mineral. In Petrochronology: Methods and Applications (eds Kohn, MJ, Engi, M and Lanari, P), pp. 261–95. Reviews in Mineralogy & Geochemistry 83.CrossRefGoogle Scholar
Rubatto, D, Williams, IS and Buick, IS (2001) Zircon and monazite response to prograde metamorphism in the Reynolds Range, central Australia. Contributions to Mineralogy and Petrology 140, 458–68, doi: 10.1007/PL00007673.CrossRefGoogle Scholar
Sims, JP, Ireland, TR, Camacho, A, Lyons, P, Pieters, PE, Skirrow, RG, Stuart-Smith, PG and Mrió, R (1998) U-Pb, Th-Pb and Ar-Ar geochronology from the southern Sierras Pampeanas, Argentina: implications for the Paleozoic tectonic evolution of the western Gondwana margin. In The Proto-Andean margin of Gondwana (eds Pankhurst, RJ and Rapela, CW), pp. 259–82. Geological Society of London, Special Publication no. 142.CrossRefGoogle Scholar
Solar, GS and Brown, M (2001) Petrogenesis of migmatites in Maine USA: possible source of peraluminous leucogranite in plutons? Journal of Petrology 42, 789–23.CrossRefGoogle Scholar
Steenken, A, López de Luchi, MG, Dopico, CM, Drobe, M, Wemmer, K and Siegesmund, S (2011) The Neoproterozoic-early Paleozoic metamorphic and magmatic evolution of the Eastern Sierras Pampeanas: an overview. International Journal of Earth Sciences 100, 465–88, doi: 10.1007/s00531-010-0624-0.CrossRefGoogle Scholar
Steenken, A, Siegesmund, S, López de Luchi, MG, Frei, R and Wemmer, K (2006) Neoproterozoic to Early Palaeozoic events in the Sierra de San Luis: implications for the Famatinian geodynamics in the Eastern Sierras Pampeanas (Argentina). Journal of the Geological Society of London 163, 965–82.CrossRefGoogle Scholar
Sun, S and McDonough, WF (1989) Chemical and isotopic systematics of oceanic basalts: implication for mantle composition and processes. In Magmatism in the Ocean Basins (eds Saunders, AD and Norry, MJ), pp. 313–45. Geological Society of London, Special Publication no. 42.CrossRefGoogle Scholar
Sylvester, PJ (1998) Post-collisional strongly peraluminous granites. Lithos 45, 2944.CrossRefGoogle Scholar
Thomas, WA and Astini, RA (1996) The Argentine Precordillera: A traveler from the Ouachita Embayment of North American Laurentia. Science 273, 752–57.CrossRefGoogle ScholarPubMed
Tibaldi, AM, Otamendi, JE, Cristofolini, EA, Baliani, I, Walker, BA and Bergantz, GW (2013) Reconstruction of the Early Ordovician Famatinian arc through thermobarometry in lower and middle crustal exposures, Sierra de Valle Fértil, Argentina. Tectonophysics 589, 151–66, doi: 10.1016/j.tecto.2012.12.032.CrossRefGoogle Scholar
van Staal, CR, Vujovich, GI, Currie, KL and Naipauer, M (2011) An Alpine-style Ordovician collision complex in the Sierra de Pie de Palo, Argentina: Record of subduction of Cuyania beneath the Famatina arc. Journal of Structural Geology 33, 343–61, doi: 10.1016/j.jsg.2010.10.011.CrossRefGoogle Scholar
van Westrenen, W, Blundy, JD and Wood, BJ (2001) High field strength element/rare earth element fractionation during partial melting in the presence of garnet: Implications for identification of mantle heterogeneities. Geochemistry, Geophysics, Geosystems 2, doi: 10.1029/2000GC000133.CrossRefGoogle Scholar
Vujovich, GI and Kay, SM (1998) A Laurentian? Grenville-age oceanic arc/back-arc terrane in the Sierra de Pie de Palo, Western Sierras Pampeanas, Argentina. In The Proto-Andean Margin of Gondwana (eds Pankhurst, RJ and Rapela, CW), pp. 159–79. Geological Society of London, Special Publication no. 142, doi: 10.1144/GSL.SP.1998.142.01.09.CrossRefGoogle Scholar
Vujovich, GI, van Staal, CR and Davis, W (2004) Age constraints on the tectonic evolution and provenance of the Pie de Palo Complex, Cuyania composite terrane, and the Famatinian Orogeny in the Sierra de Pie de Palo, San Juan, Argentina. Gondwana Research 7, 1041–56, doi: 10.1016/S1342-937X(05)71083-2.CrossRefGoogle Scholar
Watson, EB (1982) Basalt contamination by continental crust: Some experiments and models. Contributions to Mineralogy and Petrology 80, 7387, doi: 10.1007/BF00376736.CrossRefGoogle Scholar
Whitney, DL and Evans, BW (2010) Abbreviations for names of rock-forming minerals. American Mineralogist 95, 185–87, doi: 10.2138/am.2010.3371.CrossRefGoogle Scholar
Williams, IS (1998) U-Th-Pb geochronology by ion microprobe. Reviews in Economic Geology 7, 135.Google Scholar
Williams, IS (2001) Response of detrital zircon and monazite, and their U–Pb isotopic systems, to regional metamorphism and host-rock partial melting, Cooma Complex, southeastern Australia. Australian Journal of Earth Sciences 48, 557–80.CrossRefGoogle Scholar
Winchester, JA and Floyd, PA (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology 20, 325–43.CrossRefGoogle Scholar
Zimmermann, U, Niemeyer, H and Meffre, S (2010) Revealing the continental margin of Gondwana: The Ordovician arc of the Cordón de Lila (northern Chile). International Journal of Earth Sciences 99, 3956, doi: 10.1007/s00531-009-0483-8.CrossRefGoogle Scholar
Supplementary material: File

Ramacciotti et al. supplementary material

Table S1

Download Ramacciotti et al. supplementary material(File)
File 106.5 KB