Hostname: page-component-5f745c7db-nzk4m Total loading time: 0 Render date: 2025-01-06T07:37:06.086Z Has data issue: true hasContentIssue false

Insights into a million-year-scale Rhenohercynian carbonate platform evolution through a multi-disciplinary approach: example of a Givetian carbonate record from Belgium

Published online by Cambridge University Press:  30 May 2016

D. PAS*
Affiliation:
Sedimentary Petrology, B20, Université de Liège, Sart-Tilman 4000, Liège, Belgium
A. C. DA SILVA
Affiliation:
Sedimentary Petrology, B20, Université de Liège, Sart-Tilman 4000, Liège, Belgium
X. DEVLEESCHOUWER
Affiliation:
O.D. Earth and History of Life, Royal Belgian Institute of Natural Sciences, 13 Rue Jenner, B-1000, Brussels, Belgium
D. DE VLEESCHOUWER
Affiliation:
MARUM–Center for Marine Environment Sciences, University of Bremen, Leobener Strasse, D-28359 Bremen, Germany
P. CORNET
Affiliation:
Sedimentary Petrology, B20, Université de Liège, Sart-Tilman 4000, Liège, Belgium
C. LABAYE
Affiliation:
Sedimentary Petrology, B20, Université de Liège, Sart-Tilman 4000, Liège, Belgium
F. BOULVAIN
Affiliation:
Sedimentary Petrology, B20, Université de Liège, Sart-Tilman 4000, Liège, Belgium
*
Author for correspondence: [email protected]

Abstract

In this paper we formulate answers to three important questions related to Givetian carbonate records and their use for reconstructing million-year-scale past palaeoenvironmental changes. First, we provide detailed illustrations of the fascinating diversity that shaped a significant shallow reefal platform during early to late Givetian time in the Rhenohercynian Ocean; secondly we improve the sedimentological model of the extensive Givetian carbonate platform in the Dinant Basin; and thirdly we evaluate the application of magnetic susceptibility as a tool for long-term trend correlations and palaeoenvironmental reconstructions. These goals are reached by making a sedimentological, geophysical and geochemical study of the La Thure section. Through the early–late Givetian interval we discerned 18 microfacies ranging from a homoclinal ramp to a discontinuously rimmed shelf and then a drowning shelf. The comparison of these sedimentological results with those published for the south of the Dinant Syncline allowed us to provide an up to date model of the vertical and lateral environmental development of one of the largest Givetian carbonate platforms in Europe. This comparison also increased the knowledge on the distribution of facies belts in the Dinant Basin and allowed us to highlight the Taghanic Event. Palaeoredox proxies reveal a substantial change in the oxygenation level, from oxygen-depleted to more oxic conditions, between middle and late Givetian time. We demonstrated the relationship between variation in magnetic susceptibility values and proxies for siliciclastic input (such as Si, Al). The La Thure section is considered a key section for the understanding of internal shelf settings bordering Laurussia's southeastern margin.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aboussalam, Z. S. 2003 Das “Taghanic-Event” im höheren Mittel-Devon von West-Europa und Marokko. Münstersche Forschungen zur Geologie und Paläontologie 97, 1332.Google Scholar
Aboussalam, Z. S. & Becker, R. T. 2011. The global Taghanic Biocrisis (Givetian) in the eastern Anti-Atlas, Morocco. Palaeogeography, Palaeoclimatology, Palaeoecology 304, 136–64.CrossRefGoogle Scholar
Aitken, J. D. 1967. Classification and environmental significance of cryptalgal limestones and dolomites, with illustrations from the Cambrian and Ordovician of southwestern Alberta. Journal of Sedimentary Petrology 37, 1163–78.Google Scholar
Averbuch, O., Tribovillard, N., Devleeschouwer, X., Riquier, L., Mistiaen, B. & Van Vliet-Lanoe, B. 2005. Mountain building-enhanced continental weathering and organic carbon burial as major causes for climatic cooling at the Frasnian–Famennian boundary (c. 376 Ma)? Terra Nova 17, 2534.Google Scholar
Bábek, O., Kalvoda, J., Aretz, M., Cossey, P. J., Devuyst, F. X., Herbig, H. G. & Sevastopulo, G. 2010. The correlation potential of magnetic susceptibility and outcrop gamma-ray logs at Tournaisian-Viséan boundary sections in Western Europe. Geologica Belgica 13, 291308.Google Scholar
Bábek, O., Přikryl, T. & Hladil, J. 2007. Progressive drowning of carbonate platform in the Moravo-Silesian Basin (Czech Republic) before the Frasnian/Famennian event: facies, compositional variations and gamma-ray spectrometry. Facies 53, 293316.Google Scholar
Baccelle, L. & Bosellini, A. 1965. Diagrammi per la stima visiva della composizione percentuale nelle rocce sedimentarie. Annali della Università di Ferrara, Sezione IX, Science Geologiche e Paleontologiche 1 (3), 5962.Google Scholar
Baird, G. C. & Brett, C. E. 2008. Late Givetian Taghanic bioevents in New York State: new discoveries and questions. Bulletin of Geosciences 83, 357–70.Google Scholar
Belanger, I., Delaby, S., Delcambre, B., Ghysel, P., Hennebert, M., Laloux, M., Marion, J.-M., Mottequin, B. & Pingot, J.-L. 2012. Redéfinition des unités structurales du front varisque utilisées dans le cadre de la nouvelle Carte géologique de Wallonie (Belgique). Geologica Belgica 15, 169–75.Google Scholar
Boulvain, F., Coen-Aubert, M., Mansy, J. L., Proust, J. N. & Tourneur, F. 1995. Le Givetien en Avesnois (Nord de la France): paléoenvironnements et implications paléogéographiques. Bulletin de la Société belge de Géologie 103, 171203.Google Scholar
Boulvain, F., Da Silva, A. C., Mabille, C., Hladil, J., Gersl, M., Koptikova, L. & Schnabl, P. 2010. Magnetic susceptibility correlation of km-thick Eifelian-Frasnian sections (Ardennes and Moravia). Geologica Belgica 13, 309–18.Google Scholar
Boulvain, F., Mabille, C., Poulain, G. & Da Silva, A. C. 2009. Towards a palaeogeographical and sequential framework for the Givetian of Belgium. Geologica Belgica 12, 161–78.Google Scholar
Boulvain, F. & Préat, A. 1986. Les calcaires laminaires du Givétien Supérieur du bord sud du Bassin de Dinant (Belgique, France): témoins d'une évolution paléoclimatique. Annales de la Societé Géologique de Belgique 109, 609–19.Google Scholar
Bultynck, P. 1974. Conodontes de la formation de Fromelennes du Givetien de l'Ardenne franco-belge. Bulletin de l'Institut Royal des Sciences Naturelles de Belgique, Sciences de la Terre 50 (10), 130.Google Scholar
Bultynck, P. 1987. Pelagic and neritic conodont successions from the Givetian of pre-Sahara Morocco and the Ardennes. Bulletin de l'Institut Royal des Sciences Naturelles de Belgique, Sciences de la Terre 57, 149–81.Google Scholar
Bultynck, P., Coen-Aubert, M., Dejonghe, L., Godefroid, J., Hance, L., Lacroix, D., Preat, A., Stainier, P., Steemans, P., Streel, M. & Tourneur, F. 1991. Les formations du Dévonien moyen de la Belgique. Mémoires pour Servir à l'Explication des Cartes Géologiques et Minières de la Belgique 30, 1105.Google Scholar
Bultynck, P. & Dejonghe, L. 2001. Devonian lithostratigraphic units (Belgium). In Guide to a Revised Lithostratigraphic Scale of Belgium (eds Bultynck, P. & Dejonghe, L.), pp. 3969. Geologica Belgica.Google Scholar
Casier, J. G., Devleeschouwer, X., Maillet, S., Petitclerc, E. & Préat, A. 2013. Ostracods and rock facies across the Givetian/Frasnian boundary interval in the Sourd d'Ave section at Ave-et-Auffe (Dinant Synclinorium, Belgium). Bulletin of Geosciences 88, 241–64.Google Scholar
Casier, J. G. & Préat, A. 1991. Evolution sédimentaire et Ostracodes de la base du Givetien à Resteigne (bord sud du Bassin de Dinant, Belgique). Bulletin de l'Institut Royal des Sciences Naturelles de Belgique, Sciences de la Terre 61, 157–77.Google Scholar
Casier, J. G. & Préat, A. 2013. Ostracodes et lithologie du stratotype de la Formation du Mont d'Haurs (Givetien, Synclinorium de Dinant). Revue de Paléobiologie 32, 481501.Google Scholar
Coen-Aubert, M. 1992. Rugueux coloniaux mésodevoniens du fondry des chiens à nismes (Ardennes, Belgique). Bulletin de l'Institut Royal des Sciences Naturelles de Belgique, Sciences de la Terre 62, 521.Google Scholar
Coen-Aubert, M. 2000. Stratigraphy and additional rugose corals from the Givetian Mont d'Haurs formation in the Ardennes. Bulletin de l'Institut Royal des Sciences Naturelles de Belgique, Sciences de la Terre 70, 524.Google Scholar
Coen-Aubert, M. 2002. Temnophyllids and spinophyllids (Rugosa) from the Givetian Mont d'Haurs formation in Belgium. Bulletin de l'Institut Royal des Sciences Naturelles de Belgique, Sciences de la Terre 72, 524.Google Scholar
Coen-Aubert, M., Preat, A. & Tourneur, F. 1986. Compte rendu de l'excursion de la Société belge de Géologie du 6 novembre 1985 consacrée à l'étude du sommet du Couvinien et du Givetien au bord sud du Bassin de Dinant, de Resteigne à Beauraing. Bulletin de la Société belge de Géologie 95, 247–56.Google Scholar
Cullen, H. M., De Menocal, P. B., Hemming, S., Brown, F. H., Guilderson, T. & Sirocko, F. 2000. Climate change and the collapse of the Akkadian empire: evidence from the deep sea. Geology 28, 379–82.Google Scholar
Da Silva, A. C. & Boulvain, F. 2004. From paleosols to carbonate mounds: facies and environments of Middle Frasnian carbonate platform in Belgium. Geological Quarterly 48, 253–66.Google Scholar
Da Silva, A. C. & Boulvain, F. 2012. Analysis of the Devonian (Frasnian) platform from Belgium: a multi-faceted approach for basin evolution reconstruction. Basin Research 24, 338–56.Google Scholar
Da Silva, A. C., Dekkers, M. J., Mabille, C. & Boulvain, F. 2012. Magnetic susceptibility and its relationship with paleoenvironments, diagenesis and remagnetization: examples from the Devonian carbonates of Belgium. Studia Geophysica et Geodaetica 56, 677704.Google Scholar
Da Silva, A. C., De Vleeschouwer, D., Boulvain, F., Claeys, P., Fagel, N., Humblet, M., Mabille, C., Michel, J., Sardar Abadi, M., Pas, D. & Dekkers, M. J. 2013. Magnetic susceptibility as a high-resolution correlation tool and as a climatic proxy in Paleozoic rocks – merits and pitfalls: examples from the Devonian in Belgium. Marine and Petroleum Geology 46, 173–89.Google Scholar
Da Silva, A. C., Mabille, C. & Boulvain, F. 2009. Influence of sedimentary setting on the use of magnetic susceptibility: examples from the Devonian of Belgium. Sedimentology 56, 1292–306.Google Scholar
Da Silva, A.-C., Potma, K., Weissenberger, J. A. W., Whalen, M. T., Humblet, M., Mabille, C. & Boulvain, F. 2009. Magnetic susceptibility evolution and sedimentary environments on carbonate platform sediments and atolls, comparison of the Frasnian from Belgium and Alberta, Canada. Sedimentary Geology 214, 318.Google Scholar
Da Silva, A. C., Whalen, M. T., Hladil, J., Koptikova, L., Chen, D., Spassov, S., Boulvain, F. & Devleeschouwer, X. 2014. Application of magnetic susceptibility as a paleo-climatic proxy on Paleozoic sedimentary rocks and characterization of magnetic signal – IGCP-580 project and events. Episodes 37, 8795.Google Scholar
De Vleeschouwer, D., Boulvain, F., Da Silva, A.-C., Pas, D., Labaye, C. & Claeys, P. 2015. The astronomical calibration of the Givetian (Middle Devonian) timescale (Dinant Synclinorium, Belgium). In Magnetic Susceptibility Application: A Window onto Ancient Environments and Climate Variations (eds Silva, A. C. Da, Whalen, M. T., Hladil, J., Chadimova, L., Chen, D., Spassov, S., Boulvain, F. & Devleeschouwer, X.), pp. 245–56. Geological Society of London, Special Publication no. 414.Google Scholar
Devleeschouwer, X., Petitclerc, E., Spassov, S. & Préat, A. 2010. The Givetian-Frasnian boundary at Nismes parastratotype (Belgium): the magnetic susceptibility signal controlled by ferromagnetic minerals. Geologica Belgica 13, 351–66.Google Scholar
Dickson, J. A. D. 1965. A modified staining technique for carbonates in thin section. Nature 205 (4971), 587.Google Scholar
Dunham, R. J. 1962. Classification of carbonate rocks according to depositional texture. In Classification of Carbonate Rocks (ed. Ham, W. E.), pp. 108–21. American Association of Petroleum Geologists Memoir.Google Scholar
Embry, A. F. & Klovan, J. E. 1972. Absolute water depth limits of Late Devonian paleoecological zones. Geologische Rundschau 61, 672–86.Google Scholar
Errera, M., Mamet, B. & Sartenaer, P. 1972. Le calcaire Givetien à Givet. Bulletin de l'Institut Royal des Sciences Naturelles de Belgique, Science de la Terre 48, 159.Google Scholar
Flügel, E. 2004. Microfacies Analysis of Carbonate Rocks. Analysis, Interpretation and Application. Berlin: Springer-Verlag.Google Scholar
Fürsich, F. T. & Oschmann, W. 1993. Shell beds as tools in basin analysis: the Jurassic of Kachchh, western India. Journal of the Geological Society, London 150, 169–85.Google Scholar
Fürsich, F. T. & Pandey, D. K. 1999. Genesis and environmental significance of Upper Cretaceous shell concentrations from the Cauvery Basin, southern India. Palaeogeography, Palaeoclimatology, Palaeoecology 145, 119–39.Google Scholar
Garland, J., Tucker, M. E. & Scrutton, C. T. 1996. Microfacies analysis and metre-scale cyclicity in the Givetian back-reef sediments of southeast Devon. Proceedings of the Ussher Society 9, 31–6.Google Scholar
Gischler, E. 1995. Current and wind induced facies patterns in a Devonian atoll; Iberg Reef, Harz Mts., Germany. Palaios 10, 180–9.Google Scholar
Gouwy, S. & Bultynck, P. 2003. Conodont based graphic correlation of the Middle Devonian formations of the Ardenne (Belgium): implications for stratigraphy and construction of a regional composite. Revista Española de Micropaleontologia 35, 315–44.Google Scholar
Hatch, J. R. & Leventhal, J. S. 1992. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U.S.A. Chemical Geology 99, 6582.Google Scholar
Hennebert, M. 2008. Carte Géologique de Wallonie, Merbes-Le-Château – Thuin n° 52/1-2, à 1/25000 et sa Notice Explicative. Ministère de la région Wallonne.Google Scholar
Hladil, J., Gersl, M., Strnad, L., Frana, J., Langrova, A. & Spisiak, J. 2006. Stratigraphic variation of complex impurities in platform limestones and possible significance of atmospheric dust: a study with emphasis on gamma-ray spectrometry and magnetic susceptibility outcrop logging (Eifelian–Frasnian, Moravia, Czech Republic). International Journal of Earth Sciences 95, 703–23.Google Scholar
House, M. R. 2002. Strength, timing, setting and cause of mid-Palaeozoic extinctions. Palaeogeography, Palaeoclimatology, Palaeoecology 181, 525.Google Scholar
Joachimski, M. M., Breisig, S., Buggisch, W., Talent, J. A., Mawson, R., Gereke, M., Morrow, J. R., Day, J. & Weddige, K. 2009. Devonian climate and reef evolution: insights from oxygen isotopes in apatite. Earth and Planetary Science Letters 284, 599609.Google Scholar
Joachimski, M. M., van Geldern, R., Breisig, S., Buggisch, W. & Day, J. 2004. Oxygen isotope evolution of biogenic calcite and apatite during the Middle and Late Devonian. International Journal of Earth Sciences 93, 542–53.Google Scholar
Jones, B. & Manning, D. A. C. 1994. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology 111, 111–29.Google Scholar
Johnson, J. G. 1970. Taghanic onlap and the end of North American Devonian provinciality. Geological Society of America Bulletin 81, 2077–106.Google Scholar
Johnson, J. G., Klapper, G. & Sandberg, C. A. 1985. Devonian eustatic fluctuations in Euramerica. Geological Society of America Bulletin 96, 567–87.Google Scholar
Kidwell, S. M. & Bosence, D. W. 1991. Taphonomy and time-averaging of marine shelly faunas. In Taphonomy: Releasing the Data Locked in the Fossil Record (eds Allison, P. A. & Briggs, D. E. G.), pp. 115209. New York: Plenum Press.CrossRefGoogle Scholar
Kiessling, W., Flügel, E. & Golonka, J. A. N. 2003. Patterns of Phanerozoic carbonate platform sedimentation. Lethaia 36, 195225.Google Scholar
Koptíková, L. 2011. Precise position of the Basal Choteč event and evolution of sedimentary environments near the Lower–Middle Devonian boundary: the magnetic susceptibility, gamma-ray spectrometric, lithological, and geochemical record of the Prague Synform (Czech Republic). Palaeogeography, Palaeoclimatology, Palaeoecology 304, 96112.Google Scholar
Koptíková, L., Bábek, O., Hladil, J., Kalvoda, J. & Slavík, L. 2010. Stratigraphic significance and resolution of spectral reflectance logs in Lower Devonian carbonates of the Barrandian area, Czech Republic; a correlation with magnetic susceptibility and gamma-ray logs. Sedimentary Geology 225, 8398.Google Scholar
Krebs, W. 1974. Devonian carbonate complexes of Central Europe. In Reefs in Time and Space: Selected Examples from the Recent and Ancient (ed. Laporte, L. F.), pp. 155208. Special Publication of the Society for Economic Paleontologists and Mineralogists.Google Scholar
Lecompte, M. 1951. Les stromatoporoïdes du Dévonien moyen et supérieur du Bassin de Dinant: première partie. Mémoires de l'Institut Royal des Sciences Naturelles de Belgique 116, 1215.Google Scholar
Lecompte, M. 1952. Les stromatoporoides du Dévonien moyen et supérieur du bassin de Dinant: deuxième partie. Mémoires de l'Institut Royal des Sciences Naturelles de Belgique 117, 216359.Google Scholar
Logan, B. V. & Semenuik, V. 1976. Dynamic Metamorphism: Processes and Products in Devonian Carbonate Rocks, Canning Basin, Western Australia. Special Publication of the Geological Society of Australia 6, 138 pp.Google Scholar
Mabille, C., De Wilde, C., Hubert, B., Boulvain, F. & Da Silva, A. C. 2008a. Detailed sedimentological study of a non-classical succession for Trois-Fontaines and Terres d'Haurs formations (Lower Givetian, Marenne, Belgium) – introduction to the Marenne Member. Geologica Belgica 11, 217–38.Google Scholar
Mabille, C., Pas, D., Aretz, M., Boulvain, F., Schröder, S. & Silva, A. C. 2008b. Deposition within the vicinity of the Mid-Eifelian High: detailed sedimentological study and magnetic susceptibility of a mixed ramp-related system from the Eifelian Lauch and Nohn formations (Devonian; Ohlesberg, Eifel, Germany). Facies 54, 597612.CrossRefGoogle Scholar
Machel, H. G. 1990. Faziesinterpretation des Briloner Riffs mit Hilfe eines Faziesmodells für devonische Riffkarbonate. Geologische Jahrbuch Reihe D 95, 4383.Google Scholar
Maillet, S., Milhau, B. & Dojen, C. 2013. Stratigraphical distribution of Givetian ostracods in the type-area of the Fromelennes Formation (Fromelennes, Ardennes, France) and their relationship to global event. Bulletin of Geosciences 88, 865–92.Google Scholar
Maillet, S., Milhau, B. & Pinte, E. 2011. The Fromelennes Formation in the type-area (Fromelennes, Ardennes, France). Annales de la Société Géologique du Nord 18, 934.Google Scholar
Mamet, B. L. 1970. Sur les Umbellaceae. Canadian Journal of Earth Sciences 7, 1164–71.Google Scholar
Mamet, B. 1991. Carboniferous calcareous algae. In Calcareous Algae and Stromatolites (ed. Rober, R.), pp. 370451. Berlin, Heidelberg: Springer.Google Scholar
Mamet, B. & Préat, A. 1986. Algues givetiennes du bord sud du bassin de Dinant et des régions limitrophes. Annales de la Societé Géologique de Belgique 109, 431–54.Google Scholar
Marshall, J. E. A., Brown, J. F. & Astin, T. R. 2011. Recognising the Taghanic Crisis in the Devonian terrestrial environment and its implications for understanding land-sea interactions. Palaeogeography, Palaeoclimatology, Palaeoecology 304, 165–83.Google Scholar
McKerrow, W. S. & Scotese, C. R. (eds) 1990. Paleozoic Palaeogeography and Biogeography. Geological Society of London, Memoir no. 12.Google Scholar
Michel, J., Boulvain, F., Philippo, S. & Da Silva, A. C. 2010. Palaeoenvironmental study and small scale correlations using facies analysis and magnetic susceptibility of the mid-Emsian (Himmelbaach Quarry, Luxembourg). Geologica Belgica 13, 447–58.Google Scholar
Molina Garza, R. S. & Zijderveld, J. D. A. 1996. Paleomagnetism of Paleozoic strata, Brabant and Ardennes Massifs, Belgium: implications of prefolding and postfolding Late Carboniferous secondary magnetizations for European apparent polar wander. Journal of Geophysical Research B: Solid Earth 101, 15799–818.Google Scholar
Narkiewicz, K., Narkiewicz, M. & Bultynck, P. 2015. Conodont biofacies of the Taghanic transgressive interval (middle Givetian): Polish record and global comparisons. In Devonian Climate, Sea Level and Evolutionary Events (eds Becker, R. T., Königshof, P. & Brett, C. E.). Geological Society of London, Special Publication no. 423.Google Scholar
Neumann, M., Pozaryska, K. & Vachard, D. 1975. Remarques sur les microfacies du Devonién de Lublin (Pologne). Revue de Micropaleontologie 18, 3852.Google Scholar
Pas, D., Da Silva, A. C., Cornet, P., Bultynck, P., Königshof, P. & Boulvain, F. 2013. Sedimentary development of a continuous Middle Devonian to Mississippian section from the fore-reef fringe of the Brilon Reef Complex (Rheinisches Schiefergebirge, Germany). Facies 59, 969–90.Google Scholar
Pas, D., Da Silva, A. C., Devleeschouwer, X., De Vleeschouwer, D., Labaye, C., Cornet, P., Michel, J. & Boulvain, F. 2015. Sedimentary development and magnetic susceptibility evolution of the Frasnian in Western Belgium (Dinant Synclinorium, La Thure section). In Magnetic Susceptibility Application: A Window onto Ancient Environments and Climatic Variations (eds Da Silva, A. C., Whalen, M. T., Hladil, J., Chadimova, L., Chen, D., Spassov, S., Boulvain, F. & Devleeschouwer, X.), pp. 1536. Geological Society of London, Special Publication no. 414.Google Scholar
Pas, D., Da Silva, A. C., Suttner, T., Kido, E., Bultynck, P., Pondrelli, M., Corradini, C., De Vleeschouwer, D., Dojen, C. & Boulvain, F. 2014. Insight into the development of a carbonate platform through a multi-disciplinary approach: a case study from the Upper Devonian slope deposits of Mount Freikofel (Carnic Alps, Austria/Italy). International Journal of Earth Sciences 103, 519–38.Google Scholar
Pettijohn, F. J., Potter, P. N. & Siever, R. 1972. Sand and Sandstone. Berlin: Springer.Google Scholar
Playford, P. E. 1980. Devonian “Great Barrier Reef” of Canning Basin, Western Australia. American Association of Petroleum Geologists Bulletin 64, 814–40.Google Scholar
Pohler, S. M. L. 1998. Devonian carbonate buildup facies in an intra-oceanic island arc (Tamworth Belt, New South-Wales, Australia). Facies 39, 134.Google Scholar
Préat, A. 2006. Le Givétien franco-belge: moteur de la sédimentation eustatisme vs subsidence? Géologie de la France 1–2, 4551.Google Scholar
Préat, A. & Boulvain, F. 1982. Etude sédimentologique des calcaires givetiens à Vaucelles (bord Sud du Synclinorium de Dinant). Annales de la Societé Géologique de Belgique 105, 273–82.Google Scholar
Préat, A. & Boulvain, F. 1988. Middle and upper Devonian carbonate platform evolution in Dinant and Namur Basins (Belgium, France). In Excursion A-1, IAS 9th European Regional Meeting: Excursion Guidebook, pp. 1–25.Google Scholar
Préat, A. & Bultynck, P. 2006. Givetian. In Chronostratigraphic Units Named from Belgium (eds Bultynck, P. & Dejonghe, L.), pp. 918. Geologica Belgica.Google Scholar
Préat, A. & Carliez, D. 1994. Microfaciès et cyclicité dans le Givetien supérieur de Fromelennes (Synclinorium de Dinant, France). Annales de la Societé Géologique de Belgique 117, 227–43.Google Scholar
Préat, A., Ceuleneer, G. & Boulvain, F. 1987. Etude sédimentologique des calcaires du Givétien Inférieur d'Olloy-sur-Viroin (bord Sud du Bassin de Dinant, Belgique). Annales de la Société Géologique du Nord 106, 251–65.Google Scholar
Préat, A., Coen-Aubert, M., Mamet, B. & Tourneur, F. 1984. Sédimentologie et paléoécologie de trois niveaux récifaux du Givetien inférieur de Resteigne (bord sud du Bassin de Dinant, Belgique). Bulletin de la Société belge de Géologie 93, 227–40.Google Scholar
Préat, A. & Kasimi, R. 1995. Sédimentation de rampe mixte silico-carbonatée des couches de transition eifeliennes-givetiennes franco-belge. Deuxième partie: cyclostratigraphie et paléostructuration. Bulletin des Centres de Recherches et d'Exploration-Production . Elf-Aquitaine 19, 329–75.Google Scholar
Préat, A. & Mamet, B. 1989. Sédimentation de la plate-forme carbonatée Givetienne Franco-belge. Bulletin des Centres de Recherches et d'Exploration-Production. Elf-Aquitaine 13, 4786.Google Scholar
Purser, B. H. 1980. Sédimentation et Diagenèse des Carbonates Néritiques Récents. Paris: Edition Technip.Google Scholar
Read, J. F. 1985. Carbonate platform facies models. American Association of Petroleum Geologists Bulletin 69, 121.Google Scholar
Rimmer, S. M. 2004. Geochemical paleoredox indicators in Devonian–Mississippian black shales, Central Appalachian Basin (USA). Chemical Geology 206, 373–91.Google Scholar
Riquier, L., Averbuch, O., Devleeschouwer, X. & Tribovillard, N. 2010. Diagenetic versus detrital origin of the magnetic susceptibility variations in some carbonate Frasnian-Famennian boundary sections from Northern Africa and Western Europe: Implications for paleoenvironmental reconstructions. International Journal of Earth Sciences 99 (Suppl. 1), 5773.Google Scholar
Riquier, L., Tribovillard, N., Averbuch, O., Joachimski, M. M., Racki, G., Devleeschouwer, X., El albani, A. & Riboulleau, A. 2005. Chapter 8: Productivity and bottom water redox conditions at the Frasnian-Famennian boundary on both sides of the Eovariscan Belt: constraints from trace-element geochemistry. In Understanding Late Devonian and Permian-Triassic Biotic and Climatic Events (eds Over, J., Morrow, J. & Wignall, P.), pp. 199224. Developments in Palaeontology and Stratigraphy 20. Elsevier.Google Scholar
Scholle, P. A. & Ulmer-Scholle, D. S. 2003. Color Guide to the Petrography of Carbonate Rocks: Grains, Texture, Porosity, Diagenesis. American Association of Petroleum Geologist Memoir 77.Google Scholar
Schönlaub, H. P. & Histon, K. 2000. The Palaeozoic evolution of the Southern Alps. Mitteilungen der Österreichischen Geologischen Gesellschaft 92 (1999), 1534.Google Scholar
Scotese, C. R. 2005. Paleomap Project, Climate History. http://www.scotese.com/climate.htm Google Scholar
Skompski, S. & Szulczewski, M. 1994. Tide-dominated Middle Devonian sequence from the northern part of the Holy Cross Mountains (Central Poland). Facies 30, 247–65.Google Scholar
Śliwiński, M. G., Whalen, M. T. & Jed, D. 2010. Trace element variations in the middle Frasnian punctata zone (Late Devonian) in the Western Canada sedimentary basin – changes in oceanic bioproductivity and paleoredox spurred by a pulse of terrestrial afforestation? Geologica Belgica 13, 459–82.Google Scholar
Śliwiński, M. G., Whalen, M. T., Meyer, F. J. & Majs, F. 2012. Constraining clastic input controls on magnetic susceptibility and trace element anomalies during the Late Devonian punctata Event in the Western Canada Sedimentary Basin. Terra Nova 24, 301–9.Google Scholar
Strasser, A. 1986. Ooids in Purbeck limestones (lowermost Cretaceous) of the Swiss and French Jura. Sedimentology 33, 711–27.Google Scholar
Sur, S., Soreghan, M. J., Soreghan, G. S. & Stagner, A. F. 2010. Extracting the silicate mineral fraction from ancient carbonate: assessing the geologic record of dust. Journal of Sedimentary Research 80, 763–9.Google Scholar
Torsvik, T. H., Van der Voo, R., Preeden, U., Niocaill, C. M., Steinberger, B., Doubrovine, P. V., van Hinsbergen, D. J. J., Domeier, M., Gaina, C., Tohver, E., Meert, J. G., McCausland, P. J. & Cocks, L. R. M. 2012. Phanerozoic polar wander, palaeogeography and dynamics. Earth-Science Reviews 114, 325–68.Google Scholar
Tribovillard, N., Algeo, T. J., Lyons, T. & Riboulleau, A. 2006. Trace metals as paleoredox and paleoproductivity proxies: an update. Chemical Geology 232, 1232.Google Scholar
Tucker, M. E. 2001. Sedimentary Petrology. An introduction to the Origin of the Sedimentary Rocks, 3rd Edition. London: Blackwell.Google Scholar
Whalen, M. T. & Day, J. E. 2008. Magnetic susceptibility, biostratigraphy, and sequence stratigraphy: insights into Devonian carbonate platform development and basin infilling, western Alberta, Canada. Society for Sedimentary Geology 89, 291314.Google Scholar
Whalen, M. T. & Day, J. E. 2010. Cross-basin variations in magnetic susceptibility influenced by changing sea level, paleogeography, and paleoclimate: Upper Devonian, western Canada sedimentary basin. Journal of Sedimentary Research 80, 1109–27.Google Scholar
Wilson, J. L. 1975. Carbonate Facies in Geologic History. Berlin, Heidelberg, New York: Springer-Verlag.Google Scholar
Wood, R. 2000. Palaeoecology of a Late Devonian back reef: Canning Basin, Western Australia. Palaeontology 43, 671703.Google Scholar
Zegers, T. E., Dekkers, M. J. & Baily, S. 2003. Late Carboniferous to Permian remagnetization of Devonian limestones in the Ardennes: role of temperature, fluids, and deformation. Journal of Geophysical Research 108 (B7), 5/1–5/19.Google Scholar
Ziegler, A. P. 1982. Geological Atlas of Western and Central Europe. The Hague: Shell Internationale Petroleum Maatschappij B.V. Google Scholar
Zwing, A., Matzka, J., Bachtadse, V. & Soffel, H. C. 2005. Rock magnetic properties of remagnetized Palaeozoic clastic and carbonate rocks from the NE Rhenish massif, Germany. Geophysical Journal International 160, 477–86.Google Scholar