Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T02:34:06.727Z Has data issue: false hasContentIssue false

Hindfins of Ichthyosaurus: effects of large sample size on ‘distinct’ morphological characters

Published online by Cambridge University Press:  14 March 2018

JUDY A. MASSARE*
Affiliation:
Department of the Earth Sciences, SUNY College at Brockport, Brockport, New York 14420, USA
DEAN R. LOMAX
Affiliation:
School of Earth and Environmental Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
*
Author for correspondence: [email protected]

Abstract

The abundance of specimens of Ichthyosaurus provides an opportunity to assess morphological variation without the limits of a small sample size. This research evaluates the variation and taxonomic utility of hindfin morphology. Two seemingly distinct morphotypes of the mesopodium occur in the genus. Morphotype 1 has three elements in the third row: metatarsal two, distal tarsal three and distal tarsal four. This is the common morphology in Ichthyosaurus breviceps, I. conybeari and I. somersetensis. Morphotype 2 has four elements in the third row, owing to a bifurcation. This morphotype occurs in at least some specimens of each species, but it has several variations distinguished by the extent of contact of elements in the third row with the astragalus. Two specimens display a different morphotype in each fin, suggesting that the difference reflects individual variation. In Ichthyosaurus, the hindfin is taxonomically useful at the genus level, but species cannot be identified unequivocally from a well-preserved hindfin, although certain morphologies are more common in certain species than others. The large sample size filled in morphological gaps between what initially appeared to be taxonomically distinct characters. The full picture of variation would have been obscured with a small sample size. Furthermore, we have found several unusual morphologies which, in isolation, could have been mistaken for new taxa. Thus, one must be cautious when describing new species or genera on the basis of limited material, such as isolated fins and fragmentary specimens.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arkhangelsky, M. S. & Zverkov, N. G. 2014. On a new ichthyosaur of the genus Undorosaurus. Proceedings of the Zoological Institute, RAS 368, 187–96.Google Scholar
Bakker, M. A. de, Fowler, D. A., Oude, K. den, Dondorp, E. M., Garrido Navas, M. C., Horbanczuk, J. O., Sire, J.-Y., Szczerbinska, D. & Richardson, M. K. 2013. Digit loss in archosaur evolution and the interplay between selection and constraints. Nature 500, 445–9.Google Scholar
Bardet, N. & Fernández, M. 2000. A new ichthyosaur from the Upper Jurassic lithographic limestone of Bavaria. Journal of Paleontology 74, 503–11.Google Scholar
Brusatte, S. L., Young, M. T., Challands, T. J., Clark, N. D. L., Fischer, V., Fraser, N. C., Liston, J. J., Macfadyen, C. J., Ross, D. A., Walsh, S. & Wilkinson, M. 2015. Ichthyosaurs from the Jurassic of Skye, Scotland. Scottish Journal of Geology 51, 4355.Google Scholar
Caldwell, M. W. 1997. Limb ossification patterns of the ichthyosaur Stenopterygius, and a discussion of the proximal tarsal row of ichthyosaurs and other neodiapsid reptiles. Zoological Journal of the Linnean Society 120, 125.Google Scholar
Cooper, L. N., Berta, A., Dawson, S. D. & Reidenberg, J. S. 2007. Evolution of hyperphalangy and digit reduction in the cetacean manus. The Anatomical Record 290, 654–72.Google Scholar
Cooper, L. N. & Dawson, S. D. 2009. The trouble with flippers: a report on the prevalence of digital anomalies in Cetacea. Zoological Journal of the Linnean Society 155, 722–35.Google Scholar
Delsett, L. L., Roberts, A. J., Druckenmiller, P. S. & Hurum, J. H. 2017. A new ophthalmosaurid (Ichthyosauria) from Svalbard, Norway, and evolution of the ichthyopterygian pelvic girdle. PLoS ONE 12, e0169971. doi: 10.1371/journal.pone.0169971.Google Scholar
Druckenmiller, P. S. & Maxwell, E. E. 2010. A new Lower Cretaceous (lower Albian) ichthyosaur genus from the Clearwater Formation, Alberta, Canada. Canadian Journal of Earth Sciences 47, 1037–53.Google Scholar
Fabrezi, M., Abdala, V. & Martínez Oliver, M. I. 2007. Developmental basis of limb homology in lizards. The Anatomical Record 290, 900–12.Google Scholar
Fernández, M. 2007. Redescription and phylogenetic position of Caypullisaurus (Ichthyosauria: Ophthalmosauridae). Journal of Paleontology 81, 368–75.Google Scholar
Fischer, V. 2012. New data on the ichthyosaur Platypterygius hercynicus and its implications for the validity of the genus. Acta Palaeontologica Polonica 57, 123–34.Google Scholar
Fischer, V., Appleby, R. M., Naish, D., Liston, J., Riding, J. B., Brindley, S. & Godefroit, P. 2013. A basal thunnosaurian from Iraq reveals disparate phylogenetic origins for Cretaceous ichthyosaurs. Biology Letters 9, 20130021. doi: 10.1098/rsbl.2013.0021.Google Scholar
Ji, C., Jiang, D.-Y., Motani, R., Rieppel, O., Hao, W.-C. & Sun, Z.-Y. 2016. Phylogeny of the Ichthyopterygia incorporating recent discoveries from South China. Journal of Vertebrate Paleontology 36, e1025956. doi: 10.1080/02724634.2015.1025956.Google Scholar
Johnson, R. 1977. Size independent criteria for estimating relative age and the relationships among growth parameters in a group of fossil reptiles (Reptilia: Ichthyosauria). Canadian Journal of Earth Sciences 14, 1916–192.Google Scholar
Johnson, R. 1979. The osteology of the pectoral complex of Stenopterygius Jaekel (Reptilia, Ichthyosauria). Neues Jahrbuch für Geologie un Paläontologie, Abhandlungen 159, 4186.Google Scholar
Kolb, C. & Sander, P. M. 2009. Redescription of the ichthyosaur Platypterygius hercynicus (Kuhn 1946) from the Lower Cretaceous of Salzgitter (Lower Saxony, Germany). Palaeontographica Abteilung A−Palaozoologie−Stratigraphie 288, 151–92.Google Scholar
Lomax, D. R., Larkin, N. R., Boomer, I., Dey, S. & Copestake, P. 2017. The first known neonate Ichthyosaurus communis skeleton: a rediscovered specimen from the Lower Jurassic, UK. Historical Biology, published online 3 October 2017. doi: 10.1080/08912963.2017.1382488.Google Scholar
Lomax, D. R. & Massare, J. A. 2015. A new species of Ichthyosaurus from the Lower Jurassic of west Dorset, England. Journal of Vertebrate Paleontology 35, e903260. doi: 10.1080/02724634.2014.903260.Google Scholar
Lomax, D. R. & Massare, J. A. 2017. Two new species of Ichthyosaurus from the lowermost Jurassic (Hettangian) of Somerset, U.K. Papers in Palaeontology 3, 120.Google Scholar
Lomax, D. R., Massare, J. A. & Mistry, R. T. 2017. The taxonomic utility of forefin morphology in Lower Jurassic ichthyosaurs: Protoichthyosaurus and Ichthyosaurus. Journal of Vertebrate Paleontology 37, e1361433. doi: 10.1080/02724634.2017.1361433.Google Scholar
Maisch, M. W. 1998. A new ichthyosaur genus from the Posidonia Shale (Lower Toarcian, Jurassic) of Holzmaden, SW Germany with comments on the phylogeny of post-Triassic ichthyosaurs. Neues Jahrbuch fȕr Geologie und Paläontologie, Abhandlungen 209, 4778.Google Scholar
Maisch, M. W. 2010. Phylogeny, systematics, and the origin of the Ichthyosauria—the state of the art. Palaeodiversity 3, 151214.Google Scholar
Massare, J. A. & Lomax, D. R. 2014. An Ichthyosaurus breviceps collected by Mary Anning: new information on the species. Geological Magazine 151, 21–8.Google Scholar
Massare, J. A. & Lomax, D. R. 2016a. Composite specimens of Ichthyosaurus in historic collections. Paludicola 10, 207–40.Google Scholar
Massare, J. A. & Lomax, D. R. 2016b. A new specimen of Ichthyosaurus conybeari (Reptilia: Ichthyosauria) from Watchet, Somerset, U.K. and a re-examination of the species. Journal of Vertebrate Paleontology 36, e1163264. doi: 10.1080/02724634.2016.1163264.Google Scholar
Massare, J. A. & Lomax, D. R. 2017. A taxonomic reassessment of Ichthyosaurus communis and I. intermedius and a revised diagnosis for the genus. Journal of Systematic Palaeontology 16, 263–77.Google Scholar
Maxwell, E. E. 2012. Unravelling the influences of soft tissue flipper development on skeletal variation using and extinct taxon. Journal of Experimental Zoology 318, 545–54.Google Scholar
Maxwell, E. E. & Caldwell, M. W. 2006. A new genus of ichthyosaur from the Lower Cretaceous of western Canada. Palaeontology 49, 1043–52.Google Scholar
Maxwell, E. E., Dick, D., Padilla, S. & Parra, M. L. 2016. A new ophthalmosaurid ichthyosaur from the Early Cretaceous of Colombia. Papers in Palaeontology 2, 5970.Google Scholar
Maxwell, E. E., Scheyer, T. M. & Fowler, D. A. 2014. An evolutionary and developmental perspective on the loss of regionalization in the limbs of derived ichthyosaurs. Geological Magazine 151, 2940.Google Scholar
Maxwell, E. E., Zammit, M. & Druckenmiller, P. S. 2012. Morphology and orientation of the ichthyosaurian femur. Journal of Vertebrate Paleontology 32, 1207–11.Google Scholar
McGowan, C. 1972. The distinction between latipinnate and longipinnate ichthyosaurs. Life Science Occasional Papers, Royal Ontario Museum 20, 18.Google Scholar
McGowan, C. 1974. A revision of the latipinnate ichthyosaurs of the Lower Jurassic of England (Reptilia: Ichthyosauria). Life Sciences Contributions, Royal Ontario Museum 100, 130.Google Scholar
McGowan, C. & Motani, R. 2003. Ichthyopterygia, Part 8. Handbook of Paleoherpetology. Munich: Verlag Dr. Friedrich Pfeil, 175 pp.Google Scholar
Motani, R. 1999. On the evolution and homologies of ichthyopterygian forefins. Journal of Vertebrate Paleontology 19, 2841.Google Scholar
Motani, R., Minoura, N. & Ando, T. 1998. Ichthyosaurian relationships illuminated by new primitive skeletons from Japan. Nature 39, 255–7.Google Scholar
O'Keefe, F. R., Sidor, C. A., Larsson, H. C. E., Maga, A. & Ide, O. 2006. Evolution and homology of the astragalus in early amniotes: new fossils, new perspectives. Journal of Morphology 267, 415–25.Google Scholar
Oster, G. O., Shubin, N., Murray, J. D. & Alberch, P. 1988. Evolution and morphogenetic rules: the shape of the vertebrate limb in ontogeny and phylogeny. Evolution 42, 862–84.Google Scholar
Rieppel, O. 1993. Studies on skeleton formation in reptiles. IV. The homology of the reptilian (amniote) astragalus revisited. Journal of Vertebrate Paleontology 13, 3147.Google Scholar
Scheyer, T. M., Neenan, J. M., Bodogan, T., Furrer, H., Obrist, C. & Palmondon, M. 2017. A new, exceptionally preserved juvenile specimen of Eusaurosphargis dalsassoi (Diapsida) and implications for Mesozoic marine diapsid phylogeny. Scientific Reports 7, 4406. doi: 10.1038/s41598-017-04514-x.Google Scholar
Shubin, N. H. & Alberch, P. 1986. A morphogenetic approach to the origin and basic organization of the tetrapod limb. In Evolutionary Biology (eds Hecht, M. K., Wallace, B. & Prance, G. T.), pp. 319–87. New York: Plenum Press.Google Scholar
Zammit, M., Norris, R. M. & Kear, B. P. 2010. The Australian Cretaceous ichthyosaur Platypterygius australis: a description and review of postcranial remains. Journal of Vertebrate Paleontology 30, 1726–35.Google Scholar
Zverkov, N. 2017. Mesopodial elements in hindlimbs of ichthyosaurs and plesiosaurs: controversial interpretations and possible solution. Abstract for the International Meeting: Secondary Adaptation of Tetrapods to Life in Water, Berlin, 8, 39.Google Scholar