Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-05T13:51:50.719Z Has data issue: false hasContentIssue false

High-Mg potassic rocks in the Balkan segment of the Variscan belt (Bulgaria): implications for the genesis of orogenic lamproite magmas

Published online by Cambridge University Press:  27 October 2009

L. BUZZI
Affiliation:
Department for the Study of Territory and its Resources, University of Genoa, Corso Europa 26, I-16132 Genoa, Italy
L. GAGGERO*
Affiliation:
Department for the Study of Territory and its Resources, University of Genoa, Corso Europa 26, I-16132 Genoa, Italy
L. GROZDANOV
Affiliation:
Geological Institute of the Bulgarian Academy of Sciences, G. Bonchev Str. Bl. 24, 1113 Sofia, Bulgaria
S. YANEV
Affiliation:
Geological Institute of the Bulgarian Academy of Sciences, G. Bonchev Str. Bl. 24, 1113 Sofia, Bulgaria
F. SLEJKO
Affiliation:
Department of Earth Sciences, University of Trieste, Via Weiss 8, I-34127 Trieste, Italy
*
Author for correspondence: [email protected]

Abstract

Ultrapotassic plutons from several domains of the Variscan orogenic belt have been in turn interpreted as syn- to post-orogenic due to their age spread, but assessment of their geodynamic setting and source regions is still open to interpretation. In the Svoge region (Bulgaria), at the southern margin of the Balkan orogen, peralkalic plutons are hosted within Ordovician pelites. The main intrusion, with lamproitic affinity, which hosts monzodiorite xenoliths and a polyphase syenite suite, was emplaced at a shallow level. 40Ar–39Ar dating by step-heating of amphibole and biotite yielded a Early Carboniferous intrusion age for the main body (337 ± 4 and 339.1 ± 1.6 Ma). The lamproite intrusion is silica-rich compared with bona fide lamproites and characterized by moderate LILE and LaN/YbN enrichments. Sr and Nd isotopic data (initial ϵNd in the range −4.87 to −5.88) suggest an origin in a depleted lithospheric mantle, possibly refertilized by eo-Variscan subduction. The high-K syn-tectonic plutonism in several zones of the Variscan orogen (Bohemian, Austro-Alpine, Vosges, French and Corsica domains) is consistent with a derivation of high-K magmatism from partial melting of metasomatized mantle following the subduction along the collision front between Gondwana and Laurasia.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bergman, S. C. 1987. Lamproites and other potassium-rich igneous rocks: a review of their occurrence, mineralogy and geochemistry. In Alkaline igneous rocks (eds Fitton, J. G. & Upton, B. G. J.), pp. 103–89. Geological Society of London, Special Publication no. 30.Google Scholar
Bonin, B. 2004. Do coeval mafic and felsic magmas in post-collisional to within-plate regimes necessarily imply two contrasting, mantle and crustal, sources? A review. Lithos 78, 124.CrossRefGoogle Scholar
Buda, G. & Dobosi, G. 2004. Lamprophyre-derived high-K mafic enclaves in Variscan granitoids from the Mecsek Mts. (South Hungary). Neues Jahrbuch für Mineralogie, Abhandlungen 180 (2), 115–47.CrossRefGoogle Scholar
Carlier, G. & Lorand, J. P. 2003. Petrogenesis of a zirconolite-bearing Mediterranean-type lamproite from the Peruvian Altipiano (Andean Cordillera). Lithos 69, 1535.CrossRefGoogle Scholar
Carrigan, C. W., Mukasa, S. B., Haydoutov, I. & Kolcheva, K. 2005. Age of Variscan magmatism from the Balkan sector of the orogen, central Bulgaria. Lithos 82, 125–47.CrossRefGoogle Scholar
Carrigan, C. W., Mukasa, S. B., Haydoutov, I. & Kolcheva, K. 2006. Neoproterozoic magmatism and high-grade metamorphism in the Sredna Gora Zone, Bulgaria: An extension of the Gondwana-derived Avalonian–Cadomian belt? Precambrian Research 147, 404–16.CrossRefGoogle Scholar
Cocherie, A., Guerrot, C. & Rossi, P. 1992. Single-zircon dating by step-wise Pb-evaporation: Comparison with other geochronological techniques applied to the Hercynian granites of Corsica, France. Chemical Geology 101, 131–41.Google Scholar
Cocherie, A., Rossi, P., Fouillac, A. M. & Vidal, P. 1994. Crust and mantle contributions to granite genesis – An example from the Variscan batholith of Corsica, France, studied by trace element and Nd–Sr–O-isotope systematics. Chemical Geology 115, 173211.CrossRefGoogle Scholar
Conticelli, S. 1998. The effect of crustal contamination on ultrapotassic magmas with lamproitic affinity: mineralogical, geochemical and isotope data from the Torre Alfina lavas and xenoliths, Central Italy. Chemical Geology 149, 5181.CrossRefGoogle Scholar
Conticelli, S., D'Antonio, M., Pinarelli, L. & Civetta, L. 2002. Source contamination and mantle heterogeneity in the genesis of Italian potassic and ultrapotassic volcanic rocks: Sr–Nd–Pb isotope data from Roman Province and Southern Tuscany. Mineralogy and Petrology 74 (2–4), 189222.CrossRefGoogle Scholar
Cortesogno, L., Gaggero, L., Ronchi, A. & Yanev, S. 2004. Late orogenic magmatism and sedimentation within Late Carboniferous to Early Permian basins in the Balkan terrane (Bulgaria): geodynamic implications. International Journal of Earth Sciences 93, 500–20.Google Scholar
Davies, J. H. & von Blanckenburg, F. 1995. Slab breakoff: a model of lithosphere detachment and deformation in collisional orogens. Earth and Planetary Science Letters 129, 85102.CrossRefGoogle Scholar
Debon, F., Guerrot, C., Ménot, R.-P., Vivier, G. & Cocherie, A. 1998. Late Variscan granites of the Belledonne massif (French Western Alps): an Early Visean magnesian plutonism. Schweizerische Mineralogische und Petrographische Mitteilungen 78, 6785.Google Scholar
DePaolo, D. J. & Wasserburg, G. J. 1976. Nd isotopic variations and petrogenetic models. Geophysical Research Letters 3, 743–6.CrossRefGoogle Scholar
Dyulgerov, M. M. & Platevoet, B. 2006. Unusual Ti and Zr aegirine–augite and potassic magnesio-arfvedsonite in the peralkaline potassic oversaturated Buhovo-Seslavtzi complex, Bulgaria. European Journal of Mineralogy 18, 127–38.CrossRefGoogle Scholar
Finger, F., Roberts, M. P., Haunschmid, B., Schermaier, A. & Steyrer, H. P. 1997. Variscan granitoids of central Europe: their typology, potential sources and tectonothermal relations. Mineralogy and Petrology 61, 6796.CrossRefGoogle Scholar
Finger, F., Gerdes, A., Janousek, V., René, M. & Riegler, G. 2007. Resolving the Variscan evolution of the Moldanubian sector of the Bohemian Massif: the significance of the Bavarian and the Moravo-Moldanubian tectonometamorphic phases. Journal of Geosciences 52, 928.Google Scholar
Foley, S. F. 1992. Vein-plus-wall-rock melting mechanisms in the lithosphere and the origin of potassic magmas. Lithos 28, 435–53.CrossRefGoogle Scholar
Foley, S. F., Venturelli, G., Green, D. H. & Toscani, L. 1987. The ultrapotassic rocks: characteristics, classification and constraints for petrogenetic models. Earth Science Reviews 24, 81134.CrossRefGoogle Scholar
Fraser, K. J., Hawkesworth, C. J., Erlank, A. J., Mitchell, R. H. & Scott-Smith, B. H. 1985. Sr, Nd and Pb isotope and minor element geochemistry of lamproites and kimberlites. Earth and Planetary Science Letters 76, 5770.CrossRefGoogle Scholar
Fuhrman, M. L. & Lindsley, D. H. 1988. Ternary-feldspar modeling and thermometry. American Mineralogist 73, 201–15.Google Scholar
Gaggero, L., Buzzi, L., Haydoutov, I. & Cortesogno, L. 2008. Eclogite relics in the Variscan orogenic belt of Bulgaria (SE Europe). International Journal of Earth Sciences, doi: 10.1007/s00531-008-0352-x.CrossRefGoogle Scholar
Gerdes, A., Wöerner, G. & Finger, F. 2000. Hybrids, magma mixing and enriched mantle melts in post-collisional Variscan granitoids: the Rastenberg Pluton, Austria. In Orogenic processes: Quantification and Modelling in the Variscan Belt (eds Franke, W., Haak, V., Oncken, O. & Tanner, D.), pp. 415–31. Geological Society of London, Special Publication no. 179.Google Scholar
Grozdanov, L. 1965. Uber die entstehungsfolge und die kristallisation der kalireiken alkaligesteine von Svidnja. Bulletin de l'Institut Scientifique de Recherches Geologiques 2, 397–8.Google Scholar
Gutiérrez-Marco, J. C., Yanev, S., Sachancki, V., Rábano, I. & Lakova, I. 2003. New finding of trilobites and graptolites in the Ordovician in Bulgaria. Review of the Bulgarian Geological Society 63 (1–3), 51–8.Google Scholar
Hawthorne, F. C. & Oberti, R. 2007. Classification of the amphiboles. Reviews in Mineralogy & Geochemistry, Mineralogical Society of America, Geochemical Society, Accademia Nazionale dei Lincei 67, 5588.Google Scholar
Haydoutov, I. 1989. Precambrian ophiolites, Cambrian island arc, and Variscan suture in the South Carpathian–Balkan region. Geology 17, 905–8.2.3.CO;2>CrossRefGoogle Scholar
Haydoutov, I., Kolcheva, K., Daieva, L. A., Savov, I. & Carrigan, C. W. 2004. Island arc origin of the variegated formations from the East Rhodope, Bulgaria – Implications for the evolution of the Rhodope Massif. Ofioliti 29, 145–57.Google Scholar
Haydoutov, I. & Yanev, S. 1997. The Protomoesian microcontinent of the Balkan Peninsula – a peri-Gondwanaland piece. Tectonophysics 272, 303–13.CrossRefGoogle Scholar
Holland, T. & Blundy, J. 1994. Non-ideal interactions in calcic amphiboles and their bearing on amphibole–plagioclase thermometry. Contributions to Mineralogy and Petrology 116, 433–47.CrossRefGoogle Scholar
Holub, F. V., Cocherie, A. & Rossi, P. 1997. Radiometric dating of granitic rocks from the Central Bohemian Plutonic Complex (Czech Republic): constraints on the chronology of thermal and tectonic events along the Moldanubian–Barrandian boundary. Comptes Rendus Académie Sciences Paris 325, 1926.Google Scholar
Huebner, J. S. & Sato, M. 1970. The oxygen fugacity-temperature relationships of manganese oxide and nickel oxide buffers. American Mineralogist 55, 934–52.Google Scholar
Janousek, V. & Holub, F. V. 2007. The causal link between HP–HT metamorphism and ultrapotassic magmatism in collisional orogens: case study from the Moldanubian Zone of the Bohemian Massif. Proceedings of the Geologists’ Association 118, 7586.CrossRefGoogle Scholar
Klötzli, U. S., Buda, G. & Skiöld, T. 2004. Zircon typology, geochronology and whole rock Sr–Nd isotope systematics of the Mecsek Mountain granitoids in the Tisia Terrane (Hungary). Mineralogy and Petrology 81, 113–34.CrossRefGoogle Scholar
Kretz, R. 1983. Symbols for rock-forming minerals. American Mineralogist 68, 277–9.Google Scholar
Langer, C., Hegner, E., Altherr, R., Satir, M. & Henjes-Kunst, F. 1995. Carboniferous granitoids from the Odenwald, the Schwarzwald and the Vosges: constraints on magma sources. Terra Nostra 95, 114.Google Scholar
Leake, B. E., Woolley, A. R., Arps, C. E. S., Birch, W. D., Gilbert, M. C., Grice, J. D., Hawthorne, F. C., Kato, A., Kisch, H. J., Krivovichev, V. G., Linthout, K., Laird, J., Mandarino, J. A., Maresch, W. V., Nickel, E. H., Rock, N. M. S., Schumacher, J. C., Smith, D. C., Stephenson, N. C. N., Ungaretti, L., Whittaker, E. J. W. & Youzhi, G. 1997. Nomenclature of amphiboles: report of the subcommittee on amphiboles of the International Mineralogical Association, Commission on new minerals and mineral names. Canadian Mineralogist 35, 219–46.Google Scholar
Leake, B. E., Woolley, A. R., Birch, W. D., Burke, E. A. J., Ferraris, G., Grice, J. D., Hawthorne, F. C., Kisch, H. J., Krivovichev, V. G., Schumacher, J. C., Stephenson, N. C. N. & Whittaker, E. J. W. 2003. Nomenclature of amphiboles: additions and revisions to the International Mineralogical Association's 1997 recommendations. Canadian Mineralogist 41, 1355–62.CrossRefGoogle Scholar
Le Bas, M. J., Le Maitre, R. W., Streckeisen, A. L. & Zanettin, B. 1986. A chemical classification of volcanic rocks based on the total alkali–silica diagram. Journal of Petrology 27, 745–50.CrossRefGoogle Scholar
Le Bas, M. J. & Streckeisen, A. L. 1991. The IUGS systematics of igneous rocks. Journal of Geological Society, London 148, 825–33.CrossRefGoogle Scholar
Liew, T. C. & Hofmann, A. W. 1988. Precambrian crustal components, plutonic associations, plate environment of the Hercynian Fold Belt of central Europe: indications from a Nd and Sr isotope study. Contributions to Mineralogy and Petrology 98, 129–38.CrossRefGoogle Scholar
Lilov, P., Grozdanov, L. & Peeva, I. 1968. On the absolute age for the magmatic rocks from the deposits of Svidnya and Seslavci. Bulletin Geological Institute, Series Geochemistry, Mineralogy and Petrography 17, 7982.Google Scholar
Ludwig, K. R. 1994. Analyst: a computer program for control of a thermal-ionization single-collector mass-spectrometer. US Geological Survey Open File Report, 92–543.Google Scholar
Mitchell, R. H. & Bergman, S. C. 1991. Petrology of lamproites. Plenum Press.CrossRefGoogle Scholar
Mitchell, R. H. & Edgar, A. D. 2002. Melting experiments on SiO2-rich lamproites to 6.4 GPa and their bearing on the sources of lamproite magmas. Mineralogy and Petrology 74, 115–28.CrossRefGoogle Scholar
Morimoto, N. 1988. Nomenclature of pyroxenes. Schweizerische Mineralogische und Petrographische Mitteilungen 68, 95111.Google Scholar
Nasdala, L., Wenzel, T., Pidgeon, R. T. & Kronz, A. 1999. Internal structures and dating of complex zircons from Meissen Massif monzonites, Saxony. Chemical Geology 156, 331–41.CrossRefGoogle Scholar
Nelson, D. R., McCulloch, M. T. & Sun, S. S. 1986. The origins of ultrapotassic rocks as inferred from Sr, Nd and Pb isotope. Geochimica et Cosmochimica Acta 50, 231–45.CrossRefGoogle Scholar
Paquette, J.-L., Ménot, R.-P., Pin, C. & Orsini, J.-B. 2003. Episodic and short-lived granitic pulses in a post-collisional setting: evidence from precise U–Pb zircon dating through a crustal cross-section in Corsica. Chemical Geology 198, 120.CrossRefGoogle Scholar
Prelevic, D. & Foley, S. F. 2007. Accretion of arc-oceanic lithospheric mantle in the Mediterranean: evidence from extremely high-Mg olivines and Cr-rich spinel inclusions in lamproites. Earth and Planetary Science Letters 256, 120–35.CrossRefGoogle Scholar
Prelevic, D., Foley, S. F., Cvetkovic, V. & Romer, R. L. 2004. Origin of Minette by Mixing of Lamproite and Dacite Magmas in Veliki Majdan, Serbia. Journal of Petrology 45, 759–92.CrossRefGoogle Scholar
Prelevic, D., Foley, S. F., Romer, R. L. & Conticelli, S. 2008. Mediterranean Tertiary lamproites derived from multiple source components in postcollisional geodynamics. Geochimica et Cosmochimica Acta 72, 2125–56.CrossRefGoogle Scholar
Rock, N. M. S. 1990. The International Mineralogical Association (IMA/CNMMN) Pyroxene nomenclature scheme: computerization and its consequences. Mineralogy and Petrology 43, 99119.CrossRefGoogle Scholar
Rogers, N. W., Hawkesworth, C. J., Mattey, D. P. & Harmon, R. S. 1987. Sediment subduction and the source of potassium in orogenic leucitites. Geology 15, 451–3.2.0.CO;2>CrossRefGoogle Scholar
Rudnick, R. L. & Gao, S. 2004. Composition of the Continental Crust. In Treatise on Geochemistry: volume 3 – The Crust (eds Holland, H. D. & Turekian, K. K.), pp. 164. Amsterdam: Elsevier.Google Scholar
Rutherford, M. J. 1973. The phase relations of aluminous iron biotite in the system KAlSi3O8–KalSiO4–Al2O3–Fe–O–H. Journal of Petrology 14, 159–80.CrossRefGoogle Scholar
Sabatier, H. 1980. Vaugnérites et granites: une association particulière de roches grenues acides et basiques. Bulletin de Minéralogie 103, 507–22.CrossRefGoogle Scholar
Savov, I., Ryan, J., Haydoutov, I. & Schijf, J. 2001. Late Precambrian Balkan–Carpathian ophiolite – a slice of the Pan-African ocean crust? Geochemical and tectonic insights from the Tcherni Vrah and Deli Jovan massifs. Bulgaria and Serbia. Journal of Volcanological Geothermal Research 110, 299318.CrossRefGoogle Scholar
Schaltegger, U., Gnos, E., Küpfer, T. & Labhart, T. P. 1991. Geochemistry and tectonic significance of Late Hercynian potassic and ultrapotassic magmatism in the Aar Massif (Central Alps). Schweizerische Mineralogische und Petrographische Mitteilungen 71, 391403.Google Scholar
Schaltegger, U., Schneider, J.-L., Maurin, J.-C. & Corfu, F. 1996. Precise U–Pb chronometry of 345–340 Ma old magmatism related to syn-convergence extension in the Southern Vosges (Central Variscan Belt). Earth and Planetary Science Letters 144, 403–19.CrossRefGoogle Scholar
Solgadi, F., Moyen, J.-F., Vanderhaeghe, O., Sawyer, E. W. & Reisberg, L. 2007. The role of crustal anatexis and mantle-derived magmas in the genesis of synorogenic Hercynian granites of the Livradois area, French Massif Central. Canadian Mineralogist 45, 581606.CrossRefGoogle Scholar
Spear, F. S. & Cheney, J. T. 1989. A petrogenetic grid for pelitic schists in the system K2O–FeO–MgO–Al2O3–SiO2–H2O. Contributions to Mineralogy and Petrology 101, 149–64.CrossRefGoogle Scholar
Stefanova, M. 1966. Petrochemical peculiarities of the Svidnya potassium alkaline rocks. Bulletin of ‘Strasimir Dimitrov’ Institute of Geology Kh. XV, 191–203.Google Scholar
Stefanova, M., Pavlova, M. & Amov, B. 1974. Geochemistry and isotopic composition of lead from potassium-alkaline rocks of lamproite character. In Mineral Genesis, pp. 333–48. Sofia: Bulgarian Academy of Science (in Bulgarian).Google Scholar
Sun, S. S. & McDonough, W. F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In Magmatism in ocean basins (eds Saunders, A. D. & Norry, M. J.), pp. 313–45. Geological Society of London, Special Publication no. 42.Google Scholar
Thompson, R. N. & Fowler, M. B. 1986. Subduction-related shoshonitic and ultrapotassic magmatism: a study of Siluro-Ordovician syenites from the Scottish Caledonides. Contributions to Mineralogy and Petrology 94, 507–22.CrossRefGoogle Scholar
Venturelli, G., Mariani, E. S., Foley, S. F., Capedri, S. & Crawford, A. J. 1988. Petrogenesis and conditions of crystallization of Spanish lamproitic rocks. Canadian Mineralogist 26, 6779.Google Scholar
Villa, I. M., Grobéty, B., Kelley, S. P., Trigila, R. & Wieler, R. 1996. Assessing Ar transport paths and mechanism in the McClure Mountains hornblende. Contributions to Mineralogy and Petrology 126, 6780.CrossRefGoogle Scholar
Vladykin, N. V., Grozdanov, L. A. & Bonev, I. K. 2001. Chemical composition and geochemical characteristics of the Svidnya magmatic potassic-alkaline association, Western Stara Planina Mountain. Geochemistry, Mineralogy and Petrology 38, 322.Google Scholar
von Raumer, J. F., Bussy, F. & Stampfli, G. M. 2009. The Variscan evolution in the External massifs of the Alps and place in their Variscan framework. Comptes Rendus Geoscience 341 (2–3), 239–52.CrossRefGoogle Scholar
von Raumer, J. F., Stampfli, G. M. & Bussy, F. 2003. Gondwana-derived microcontinents – the constituents of the Variscan and Alpine collisional orogens. Tectonophysics 365, 722.CrossRefGoogle Scholar
Wartho, J.-A. 1995. Apparent argon diffusive loss 40Ar/39Ar age spectra in amphibole. Earth and Planetary Science Letters 134, 393407.CrossRefGoogle Scholar
Wen, S. & Nekvasil, H. 1994. SOLVCALC: an interactive graphics program package for calculating the ternary feldspar solvus and for two-feldspar geothermometry. Computers & Geosciences 20, 1025–40.CrossRefGoogle Scholar
Wenzel, T., Mertz, D. F., Oberhänsli, R., Becker, T. & Renne, P. R. 1997. Age, geodynamic setting, and mantle enrichment processes of a K-rich intrusion from the Meissen Massif (Northern Bohemian Massif) and implications for related occurrences from Mid-European Hercynian. Geologische Rundschau 86, 556–70.CrossRefGoogle Scholar
Wilson, M. 1991. Igneous petrogenesis: a global tectonic approach. Harper Collins.Google Scholar
Wones, D. R. 1972. Stability of biotite: A reply. American Mineralogist 57, 316–17.Google Scholar
Wones, D. R. & Eugster, H. P. 1965. Stability of biotite: experiment theory and application. American Mineralogist 50, 1228–72.Google Scholar
Woolley, A. R., Bergman, S. C., Edgar, A. D., Le Bas, M. J., Mitchell, R. H., Rock, N. M. S. & Scott Smith, B. H. 1996. Classification of lamprophyres, lamproites, kimberlites and the kalsilitic, melilitic, and leucitic rocks. Canadian Mineralogist 34, 175–86.Google Scholar
Yanev, S. 2000. Palaeozoic terranes of the Balkan Peninsula in the framework of Pangaea assembly. Palaeogeography, Palaeoclimatology, Palaeoecology 161, 151–77.CrossRefGoogle Scholar
Supplementary material: PDF

Gaggero suplementary material

Appendix.pdf

Download Gaggero suplementary material(PDF)
PDF 2.2 MB