Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-24T17:18:40.151Z Has data issue: false hasContentIssue false

Growth rate observation from the moss-built Checa travertine terrace, central Spain

Published online by Cambridge University Press:  01 May 2009

Ruud Weijermars
Affiliation:
Department of Mineralogy and Petrology, Institute of Geology, University of Uppsala, Box 555, S-75122 Uppsala, Sweden
Carla W. Mulder-Blanken
Affiliation:
Geological Institute, University of Amsterdam, 130 Nieuwe Prinsengracht, NL-1018 VZ Amsterdam, The Netherlands
Jaap Wiegers
Affiliation:
Hugo de Vries-Laboratory, University of Amsterdam, 221 Sarphatistraat, NL-1018 BX Amsterdam, The Netherlands

Abstract

In situ observations of fossil and living specimens of the calcicolous mosses Bryum pseudotriquetrum, Cratoneuron commutatum and Catoscopium nigritum revealed very fast calcite depositional rates. Rhythmic layering in the fossil mosses corresponding with the seasonal climatic cycle suggests that the moss curtain occupied by these three mosses maintains the deposition of spongeous travertine layers at a mean rate of 4 cm a−1. A mean depositional rate of 4.2 cm a−1 may be calculated from measurements of the loss of bicarbonate from the springwater after it percolated through the moss curtain. These rates suggest that the 8 m high travertine terrace of Checa with a surface area of 800 m2 did not exist two millennia ago.

Mosses could be put to man's use for creating natural overgrowths on artificial surfaces, an idea based on an allusion by Wallner. He observed that the thread-forming, blue-green algae Vaucheria builds travertine deposits at an annual rate of 0.7–1.4 cm. We observed that the mosses Cratoneuron commutatum and Bryum pseudotriquetrum may form spongeous travertine layers at respective maximum rates of 11 and 14 cm a−1. This would reduce the time required to build natural overgrowths on artificial objects to a practical period of months.

Type
Articles
Copyright
Copyright © Cambridge University Press 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chafetz, H. S. & Fouc, R. L. 1984. Travertines:depositional morphology and the bacterially constructed constituents. Journal of Sedimentary Petrology 54, 289316.Google Scholar
Gessner, F. 1959. Hydrobotanik II: Veb. Berlin: Deutscher Verlag der Wissenschaften, 441 pp.Google Scholar
Golubic, S. 1957. Vegetacija Alga na Slapovima Rijeke Krke u Dalmaciji (Die Algenvegetation an Wasserfällen des Flusses Krka in Dalmatien). Zagreb: Jugoslavenska Akademija znanosti i Umjetnosti, 231 pp.Google Scholar
La Touche, I. D. 1906. Note on the natural bridge in Gokteik Gorge. Records Geological Survey of India 33, 4754.Google Scholar
La Touche, I. D. 1913. Geology of the Northern Shan States. Memoirs Geological Survey of India 39, 325–9.Google Scholar
Osborne, R. H., Licari, G. R. & Link, M. H. 1982. Modern lacustrine stromalites, Walker Lane, Nevada. Sedimentary Geology 32, 3961.CrossRefGoogle Scholar
Parihar, N. S. & Pant, G. B. 1975. Bryophytes as rock builders – some calcicole mosses and liverworts associated with travertine formation at Sahasradhara, Dechra Dun. Current Science 44, 61–2.Google Scholar
Pavletic, Z. 1957. Beiträge zur Ökologie der Bryophyten an den Krka-Wasserfällen in Dalmatien. Jugoslavenska Akademija znanosti i Umjetnosti 312, 95137.Google Scholar
Pevalek, I. 1935. Der Travertin und die Plitvicer Seen. Verhandlungen Internationalen Verein für Limnologie 7, 165–81.Google Scholar
Riba, O. 1959. Estudio geológico de La Sierra de Albarracin. Madrid: Institute ‘Lucas Mallada’, 283 pp.Google Scholar
Richardson, D. H. S. 1981. The Biology of Mosses. Oxford: Blackwell, 350 pp.Google Scholar
Rondeel, H. E., Weijermars, R. & Van Dorssen, H. G. 1984. The reactivation of longitudinal reversed faults by strike slip faulting as a mechanism for crustal shortening, Macizo de Nevera, Sierra de Albarracin, Spain. Geologie en Mijnbouw 63, 387–98.Google Scholar
Wallner, J. 1933. Oocardium stratum Naeg, eine wichtige tuffbildende Alge Südbayerns. Planta 20, 287–93.CrossRefGoogle Scholar
Wallner, J. 1934. Über die Verbreitungsökologie der Desmidiacee Oocardium. Planta 23, 249–63.CrossRefGoogle Scholar
Watson, E. V. 1968. British Mosses and Liverworts. Cambridge: Cambridge University Press, 285 pp.Google Scholar
Weijermars, R. & Rondeel, H. E. 1984. Shear band foliation as an indicator of sense of shear: field observations in central Spain. Geology 12, 603606.2.0.CO;2>CrossRefGoogle Scholar