Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-24T16:55:48.001Z Has data issue: false hasContentIssue false

Graphite geothermometry in low and high temperature regimes: two case studies

Published online by Cambridge University Press:  01 May 2009

F. J. Luque
Affiliation:
Departamento de Cristalografía y Mineralogía, Facultad de Geología, Universidad Complutense de Madrid, 28040 Madrid, Spain
J. F. Barrenechea
Affiliation:
Departamento de Cristalografía y Mineralogía, Facultad de Geología, Universidad Complutense de Madrid, 28040 Madrid, Spain
M. Rodas
Affiliation:
Departamento de Cristalografía y Mineralogía, Facultad de Geología, Universidad Complutense de Madrid, 28040 Madrid, Spain

Abstract

This paper examines the potential use of the variation of the co parameter of graphite with temperature for geothermometric estimations. Two examples are presented in which graphite geothermometry, at low-and high-temperature conditions, is tested against other widely used geothermometers. The results obtained indicate that, at low-grade metamorphic conditions, the co parameter of graphite is affected by other factors besides the temperature, so graphite geothermometry (based on co) can only be used in such rocks for qualitative estimations. For temperatures above 500 °C, when the fully ordered graphite appears, there is a close correlation between the temperature estimations based on the structural ordering of graphite and from mineral-exchange geothermometry. The temperature calculations based on the co parameter of graphite are not influenced by factors (such as pressure or retrometamorphism) that clearly affect the exchange equilibria. Thus, graphite thermometry is a useful tool, for temperatures above 500 °C.

Type
Articles
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albee, A. L. 1962. Relationships between the mineral association, chemical composition and physical properties of the chlorite series American Mineralogist 47, 851–70.Google Scholar
Barrenechea, J. F., Rodas, M. & Arche, A. 1992. Relation between graphitization of organic matter and clay mineralogy, Silurian black shales in Central Spain Mineralogical Magazine 56, 477–85.CrossRefGoogle Scholar
Bayliss, P. 1975. Nomenclature of the trioctahedral chlorites. Canadian Mineralogist 13, 178.Google Scholar
Bence, A. E. & Albee, A. L. 1968. Empirical correction factors for the electron microanalysis of silicates and oxides Journal of Geology 76, 382403.CrossRefGoogle Scholar
Beny-Bassez, C. & Rouzaud, J. N. 1985. Characterization of carbonaceous materials by correlated electron and optical microscopy and Raman microspectroscopy Scanning Electron Microscopy 1985, 119–32.Google Scholar
Bhattacharya, A., Mazumdar, A. C. & Sen, S. K. 1988. Fe-Mg mixing in cordierite: constraints from natural data and implications for cordierite-garnet geothermometry in granulites American Mineralogist 73, 338–44.Google Scholar
Bonijoly, M., Oberlin, M. & Oberlin, A. 1982. A possible mechanism for natural graphite formation International Journal of Coal Geology 1, 283312.CrossRefGoogle Scholar
Brindley, G. W. 1961. Chlorite minerals. In The X-ray Identification and Crystal Structures of Clay Minerals (ed. Brown, G.), pp. 242–96. London: Mineralogical Society.Google Scholar
Buseck, P. R. & Bo-Jun, H. 1985. Conversion of carbonaceous material to graphite during metamorphism Geochimica et Cosmochimica Acta 49, 2003–16.CrossRefGoogle Scholar
Cathelineau, M. 1988. Cation site occupancy in chlorites and illites as a function of temperature Clay Minerals 23, 471–85.CrossRefGoogle Scholar
Cathelineau, M. & Nieva, D. 1985. A chlorite solid solution geothermometer. The Los Azufres (Mexico) geothermal field Contributions to Mineralogy and Petrology 91, 235–44.CrossRefGoogle Scholar
Dickey, J. S. & Obata, M. 1974. Graphitic hornfels dikes in the Ronda high-temperature peridotite massif American Mineralogist 59, 1183–9.Google Scholar
Diessel, C. F. K., Brothers, R. N. & Black, P. M. 1978. Coalification and graphitization in high-pressure schists in New Caledonia Contributions to Mineralogy and Petrology 68, 6378.CrossRefGoogle Scholar
Diessel, C. F. K. & Offler, R. 1975. Change in physical properties of coalified and graphitised phytoclasts with grade of metamorphism Neues Jahrbuch für Mineralogie. Monatshefte 1, 1127.Google Scholar
Ferry, J. M. & Spear, F. S. 1978. Experimental calibration of the partitioning of Fe and Mg between biotite and garnet Contributions to Mineralogy and Petrology 66, 113–17.CrossRefGoogle Scholar
Frey, M., Teichmüller, M., Teichmüller, R., Mullis, J., Kunzi, B., Breitschmid, A., Grüner, U. & Schwizer, B. 1980. Very low-grade metamorphism in external parts of the Central Alps: illite crystallinity, coal rank and fluid inclusion data Eclogae Geologicae Helvetiae 73, 173203.Google Scholar
Grew, E. S. 1974. Carbonaceous material in some metamorphic rocks of New England and other areas Journal of Geology 82, 5073.CrossRefGoogle Scholar
Harrison, W. E. 1979. Levels of graphitization of kerogen as a potential useful method of assessing paleotemperatures. In Aspects of Diagenesis (eds Scholle, P. A. and Schluger, P. R.), pp. 4553. Society of Economic Paleontology and Mineralogy, Special Publication no. 26.CrossRefGoogle Scholar
Hillier, S. & Velde, B. 1991. Octahedral occupancy and the chemical composition of diagenetic (low-temperature) chlorites Clay Minerals 26, 149–68.CrossRefGoogle Scholar
Indares, A. & Martignole, J. 1985. Biotite-garnet geothermometry in the granulite facies: the influence of Ti and Al in biotite American Mineralogist 70, 272–8.Google Scholar
Itaya, T. 1981. Carbonaceous material in pelitic schists of the Sanbagawa metamorphic belt in central Shikoku, Japan Lithos 14, 215–24.CrossRefGoogle Scholar
Kapezhinskas, K. B. 1965. Composition of chlorites as determined from their physical properties Doklady Akademii Nauk SSSR 164, 126–9.Google Scholar
Katz, M. B. 1987. Graphite deposits of Sri Lanka: a consequence of granulite facies metamorphism Mineralium Deposita 22, 1825.CrossRefGoogle Scholar
Kwiecinska, B. 1980. Mineralogy of natural graphites Polska Akademi Nauk, Prace Mineralogiczne 67, 579.Google Scholar
Landis, C. A. 1971. Graphitization of dispersed carbonaceous material in metamorphic rocks Contributions to Mineralogy and Petrology 30, 3445.CrossRefGoogle Scholar
Luque, F. J. 1990. Contribución al conocimiento de las mineralizaciones de grafito asociadas a las rocas ultramáficas de la provincia de Málaga, Doctoral thesis, 293 pp. Madrid: Servicio de Publicaciones de la Universidad Complutense de Madrid.Google Scholar
Luque, F. J., Rodas, M., Velasco, F. & Galan, E. 1987. Mineralogía y geotermometría de los diques ácidos congrafito asociados a rocas ultramáficas de la Serranía de Ronda, Málaga Estudios Geológicos 43, 367–75.Google Scholar
Luque, F. J., Rodas, M. & Galan, E. 1992. Graphite vein mineralization in the ultramafic rocks of southern Spain: mineralogy and genetic relationships Mineralium Deposita 27, 226–33.CrossRefGoogle Scholar
Pawlowski, K. 1980. Structural investigations of industrial graphites Polska Akademi Nauk, Prace Mineralogiczne 60, 783.Google Scholar
Saxena, S. K. 1969. Silicate solid solution and geothermometry. 3. Distribution of Fe and Mg between coexisting garnet and biotite Contributions to Mineralogy and Petrology 22, 259–67.CrossRefGoogle Scholar
Shengelia, D. M., Akhvlediani, R. A. & Ketskhoveli, D. N. 1979. The graphite geothermometer Doklady Academii Nauk SSSR 235, 132–4.Google Scholar
Tagiri, M. 1981. A measurement of the graphitizing-degree by the X-ray powder diffractometer Journal of the Japanese Association of Mineralogy, Petrology and Economic Geology 76, 345–52.Google Scholar
Teichmüller, M. 1987. Organic material and very low-grade metamorphism. In Low Temperature Metamorphism (ed. Frey, M.), pp. 114–61. New York: Chapman and Hall.Google Scholar
Thompson, A. B. 1976. Mineral reactions in pelitic rocks. II. Calculation of some P-T-X (Mg-Fe) phase relations American Journal of Science 276, 425–54.CrossRefGoogle Scholar
Vielzeuf, D. 1983. The spinel and quartz associations in high grade xenolite from Tallante (SE Spain) and their potential use in geothermometry and geobarometry Contributions to Mineralogy and Petrology 82, 301–11.CrossRefGoogle Scholar
Wintsch, R. P., O'connell, A. F., Ransom, B. L. & Wiechmann, M. J. 1981. Evidence for the influence of fCH4, on the crystallinity of disseminated carbon in greenschist facies rocks, Rhode Island, USA Contributions to Mineralogy and Petrology 77, 207–13.CrossRefGoogle Scholar