Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T16:03:20.343Z Has data issue: false hasContentIssue false

Global Upper Ordovician correlation by means of δ13C chemostratigraphy: implications of the discovery of the Guttenberg δ13C excursion (GICE) in Malaysia

Published online by Cambridge University Press:  19 March 2010

STIG M. BERGSTRÖM*
Affiliation:
School of Earth Sciences, Division of Geological Sciences, The Ohio State University, 155 S. Oval Mall, Columbus, Ohio 43210, USA
SACHIKO AGEMATSU
Affiliation:
Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, 305-8572, Japan
BIRGER SCHMITZ
Affiliation:
GeoBiosphere Science Centre, Department of Geology, Lund University, Sölvegatan 12, SE-223 62 Lund, Sweden
*
Author for correspondence: [email protected]

Abstract

Apart from a single study of the early Katian δ13C chemostratigraphy in two regions in China, no investigations of the Sandbian and Katian chemostratigraphy have been published from anywhere in Asia. A recent study of the conodont biostratigraphy of the classical Ordovician succession on Langkawi Islands, peninsular Malaysia, showed the presence there of strata coeval with those having the Guttenberg Carbon Excursion (GICE) on the Yangtze Platform. In an effort to establish for the first time the presence of this widespread δ13C excursion in southern Asia, a series of samples from the upper part of the Kaki Bukit Formation was isotopically analysed. This resulted in the discovery of a conspicuous δ13C excursion with peak values of ~ 2 ‰ above the baseline values. The excursion is located just above the Baltoniodus alobatus Subzone and near the level of the first appearance of Hamarodus europaeus, hence the same stratigraphic position as the GICE on the Yangtze Platform. Using the GICE, the Malaysian study interval is closely correlated with the GICE intervals at three localities representing an approximately 23 000 km long transect from Malaysia across Baltoscandia to central North America. This shows the usefulness of δ13C chemostratigraphy to clarify previously obscure stratigraphic relationships between geographically very widely separated localities.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agematsu, S., Sashida, K. & Ibrahim, A. B. 2008. Biostratigraphy and paleobiogeography of Middle and Late Ordovician conodonts from the Langkawi Islands, northwestern peninsular Malaysia. Journal of Paleontology 82, 957–73.CrossRefGoogle Scholar
Agematsu, S., Sashida, K., Salyapongse, S. & Sardsud, A. 2007. Ordovician conodonts from the Satun area, southern peninsular Thailand. Journal of Paleontology 81, 1937.CrossRefGoogle Scholar
An, Taixiang. 1987. The Lower Paleozoic conodonts of South China. Beijing University Press, 238 pp.Google Scholar
Barta, N. C., Bergström, S. M., Saltzman, M. R. & Schmitz, B. 2007. First record of the Ordovician Guttenberg δ13C excursion (GICE) in New York State and Ontario: Local and regional chronostratigraphic implications. Northeastern Geology and Environmental Sciences 29, 276–98.Google Scholar
Bergström, S. M. 1971. Conodont biostratigraphy of the Middle and Upper Ordovician of Europe and eastern North America. Geological Society of America Memoir 127, 83159.CrossRefGoogle Scholar
Bergström, S. M. 2007. The Ordovician conodont biostratigraphy in the Siljan region, south-central Sweden: a brief review of an international reference standard. In WOGOGOB 2007, 9th meeting of the Working Group on Ordovician Geology of Baltoscandia. Field Guide and Abstracts, pp. 26–41, 63–78. Sveriges Geologiska Undersökning Rapporter och Meddelanden 128.Google Scholar
Bergström, S. M., Chen, Xu, Gutiérrez-Marco, J. C. & Dronov, A. 2009 a. The new chronostratigraphic classification of the Ordovician System and its relations to major regional series and stages and δ13C chemostratigraphy. Lethaia 42, 97107.CrossRefGoogle Scholar
Bergström, S. M., Chen, Xu, Schmitz, B., Young, S. A., Rong, Jia-Yu & Saltzman, M. E. 2009 b. First documentation of the Ordovician Guttenberg δ13C excursion (GICE) in Asia: chemostratigraphy of the Pagoda and Yanwashan formations in southestern China. Geological Magazine 146, 111.CrossRefGoogle Scholar
Bergström, S. M., Huff, W. D., Saltzman, M. R., Kolata, D. R. & Leslie, S. A. 2004. The greatest volcanic ash falls in the Phanerozoic: Trans-Atlantic relations of the Ordovician Millbrig and Kinnekulle K-bentonites. The Sedimentary Record 2, 48.CrossRefGoogle Scholar
Bergström, S. M., Schmitz, B., Saltzman, M. R. & Huff, W. D. 2010. The Upper Ordovician Guttenberg δ13C excursion (GICE) in North America and Baltoscandia: Occurrence, chronostratigraphic significance, and paleoenvironmental relationships. Geological Society of America Special Paper, in press.CrossRefGoogle Scholar
Brett, C. E. & Baird, G. C. 2002. Revised stratigraphy of the Trenton Group in the type area, central New York State: sedimentology, and tectonics of a Middle Ordovician shelf-to-basin succession. Physics and Chemistry of the Earth 27, 231–63.CrossRefGoogle Scholar
Brett, C. E., McLaughlin, P. I., Cornell, S. R. & Baird, G. C. 2004. Comparative sequence stratigraphy of two classic Upper Ordovician successions, Trenton Shelf (New York–Ontario) and Lexington Platform (Kentucky–Ohio): implications for eustasy and local tectonism in eastern Laurentia. Palaeogeography, Palaeoclimatology, Palaeoecology 210, 295329.CrossRefGoogle Scholar
Cocks, L. R. M., Fortey, R. A. & Lee, C. P. 2005. A review of Lower and Middle Palaeozoic biostratigraphy in west peninsular Malaysia and southern Thailand in its context within the Sibumasu Terrane. Journal of Asian Earth Sciences 24, 703–17.CrossRefGoogle Scholar
Dzik, J. 1994. Conodonts of the Mójcza Limestone. In Ordovician carbonate platform ecosystem of the Holy Cross Mountains (ed. Urbanek, A.), pp. 43–128. Palaeontologia Polonica 53.Google Scholar
Ferretti, A. & Barnes, C. R. 1997. Upper Ordovician conodonts from the Kalkbank Limestone of Thuringia, Germany. Palaeontology 40, 1442.Google Scholar
Fortey, R. A. 1997. Late Ordovician trilobites from southern Thailand. Palaeontology 40, 397449.Google Scholar
Goldman, D., Leslie, S. A., Nõlvak, J., Young, S., Bergström, S. M. & Huff, W. D. 2007. The Global Stratotype Section and Point (GSSP) for the base of the Katian Stage of the Upper Ordovician Series at Black Knob Ridge, southeastern Oklahoma, USA. Episodes 30, 258–70.CrossRefGoogle Scholar
Goldman, D., Mitchell, C. E., Bergström, S. M., Delano, J. W. & Tice, S. 1994. K-bentonites and graptolite biostratigraphy in the Middle Ordovician of New York State and Quebec: a new chronostratigraphic model. Palaios 9, 124–43.CrossRefGoogle Scholar
Hamada, T., Igo, H., Kobayashi, T. & Koike, T. 1975. Older and middle Palaeozoic formations and fossils of Thailand and Malaysia. Japanese Journal of Geology and Geography 45, 139.Google Scholar
Hatch, J. R., Jacobson, S. R., Witzke, B. J., Risatti, J. B., Anders, D. E., Watney, W. L., Newell, K. D. & Vuletich, A. K. 1987. Possible late Middle Ordovician carbon isotope excursion: evidence from Ordovician oils and hydrocarbon source rocks, Mid-continent and East-Central United States. American Association of Petroleum Geologists Bulletin 71, 1342–54.Google Scholar
Holmer, L. E. 1989. Middle Ordovician phosphate inarticulate brachiopods from Västergötland and Dalarna, Sweden. Fossils and Strata 26, 1172.CrossRefGoogle Scholar
Igo, H. & Koike, T. 1967. Ordovician and Silurian conodonts from the Langkawi Islands, Malaya. Geology and Palaeontology of Southeast Asia 3, 129.Google Scholar
Jaanusson, V. 1963. Lower and middle Viruan (middle Ordovician) of the Siljan district. Bulletin of the Geological Institutions of the University of Uppsala 42, 140.Google Scholar
Jaanusson, V. 1976. Faunal dynamics in the Middle Ordovician (Viruan) of Balto-Scandia. In The Ordovician System: Proceedings of a Palaeontological Association Symposium (ed. Bassett, M. G.), pp. 301–26. Cardiff: University of Wales Press.Google Scholar
Jaanusson, V. 1982. The Siljan District. In Fourth International Symposium on the Ordovician System. Field Excursion Guide (eds Bruton, D. & Williams, S. H.), pp. 15–42. Paleontological Contributions from the University of Oslo 279.Google Scholar
Jaanusson, V. & Martma, J. 1948. A section from the upper Chasmops series to the lower Tretaspis series at Fjäcka rivulet in the Siljan area, Dalarna; a preliminary report. Bulletin of the Geological Institutions of the University of Uppsala 32, 183–93.Google Scholar
Jones, C. R. 1961. A revision of the stratigraphical sequence of Langkawi Islands, Federation of Malaysia. Ninth Pacific Science Congress, Bangkok 1957 Proceedings 12, 287300.Google Scholar
Jones, C. R. 1968. Lower Paleozoic rocks of Malay Peninsula. American Association of Petroleum Geologists Bulletin 52, 1259–78.Google Scholar
Jones, C. R. 1981. The geology and mineral resources of Perlis, north Kedah and the Langkawi Islands. Geological Survey of Malaysia District Memoir 17, 1257.Google Scholar
Kaljo, D., Martma, T. & Saadre, T. 2007. Post-Hunnebergian Ordovician carbon isotope trend in Baltoscandia, its environmental implications and some similarities with that of Nevada. Palaeogeography, Palaeoclimatology, Palaeoecology 245, 138–55.CrossRefGoogle Scholar
Kobayashi, T. 1959 a. On some Ordovician fossils from the Thailand–Malayan borderland. Japanese Journal of Geology and Geography 29, 223–31.Google Scholar
Kobayashi, T. 1959 b. On some fossils from northern Malaya and her adjacence. Tokyo University Journal of Faculty Science 11, 387407.Google Scholar
Kobayashi, T. & Hamada, T. 1978. Upper Ordovician trilobites from the Langkawi Islands, Malaysia. Geology and Palaeontology of Southeast Asia 19, 127.Google Scholar
Kolata, D. R., Huff, W. D. & Bergström, S. M. 1996. Ordovician K-bentonites of eastern North America. Geological Society of America Special Paper 313, 184.Google Scholar
Ludvigson, G., Witzke, B. J., González, L. A., Carpenter, S., Schneider, C. L. & Hasiuk, F. 2004. Late Ordovician (Turinian–Chatfieldian) carbon isotope excursions and their stratigraphic and paleoceanographic significance. Palaeogeography, Palaeoclimatology, Palaeoecology 210, 187214.CrossRefGoogle Scholar
Ludvigson, G. A., Witzke, B. J., Schneider, C. L., Smith, E. A., Emerson, N. R., Carpenter, S. J. & González, L. A. 2002. Profile of the Mid-Caradoc (Ordovician) carbon isotope excursion at the McGregor Quarry, Clayton County, Iowa. Geological Society of Iowa Guidebook 70, 2531.Google Scholar
Laufeld, S. 1967. Caradocian chitinozoa from Dalarna, Sweden. Geologiska Föreningens i Stockholm Förhandlingar 89, 275349.CrossRefGoogle Scholar
Laurie, J. R. & Burrett, C. 1992. Biogeographic significance of Ordovician brachiopods from Thailand and Malaysia. Journal of Paleontology 66, 1623.CrossRefGoogle Scholar
Männik, P. & Viira, V. 2005. Distribution of Ordovician conodonts. In Mehikoorma (421) drill core (ed. Põldvere, A.), pp. 16–20. Estonian Geological Sections Bulletin 6.Google Scholar
Metcalfe, I. 1980. Ordovician conodonts from the Kaki Bukit area, Perlis, west Malaysia. Warta Geologi 6, 63–8.Google Scholar
Mitchell, C. E., Adhya, S., Bergström, S. M., Joy, M. P. & Delano, J. W. 2004. Discovery of the Ordovician Millbrig K-bentonite in the Trenton Group of New York State: Implications for regional correlation and sequence stratigraphy in eastern North America. Palaeogeography, Palaeoclimatology, Palaeoecology 210, 331–46.CrossRefGoogle Scholar
Ni, Shi-Zhao & Li, Zhi-Hong. 1987. The Ordovician conodonts from the Yangtze Gorges area. In Biostratigraphy of the Yangtze Gorges area (2) Early Palaeozoic Era, pp. 102–14, 386447. Beijing: Geological Publishing House.Google Scholar
Nõlvak, J., Grahn, Y. & Sturkell, E. F. F. 1999. Chitinozoan biostratigraphy of the Middle Ordovician Dalby Limestone in the Fjäcka section, Siljan district, Sweden. Proceedings of the Estonian Academy of Sciences, Geology, 1999 48, 7585.Google Scholar
Orchard, M. J. 1980. Upper Ordovician conodonts from England and Wales. Geologica et Palaeontologica 14, 944.Google Scholar
Richardson, J. G. & Bergström, S. M. 2003. Regional stratigraphic relations of the Trenton Limestone (Chatfieldian, Ordovician) in the eastern North American Midcontinent. Northeastern Geology and Environmental Sciences 18, 93115.Google Scholar
Ross, R. J. Jr & 28 co-authors. 1982. The Ordovician System in the United States. Correlation chart and explanatory notes. International Union of Geological Sciences Publication 12, 173.Google Scholar
Schopf, T. J. M. 1966. Conodonts of the Trenton Group (Ordovician) in New York, southern Ontario, and Quebec. New York State Museum and Science Service Bulletin 405, 1105.Google Scholar
Serpagli, E. 1967. I conodonti dell’ Ordoviciano superiore (Ashgilliano) delle alpi Carniche. Bollettino della Società Paleontologica Italiana 6, 30111.Google Scholar
Sloan, R. E. 2005. Minnesota fossils and fossiliferous rocks. Winona, Minnesota, 218 pp.Google Scholar
Sweet, W. C. 1984. Graphic correlation of upper Middle and Upper Ordovician rocks North American Midcontinent Province. In Aspects of the Ordovician System (ed. Bruton, D. L.), pp. 23–35. Palaeontological Contributions from the University of Oslo 295.Google Scholar
Sweet, W. C. 1987. Distribution and significance of conodonts in Middle and Upper Ordovician strata of the Upper Mississippi Valley region. In Middle and Late Ordovician lithostratigraphy and biostratigraphy of the Upper Mississippi Valley (ed. Sloan, R. E.), pp. 167–72. Minnesota Geological Survey Report of Investigations 35.Google Scholar
Sweet, W. C. 2000. Conodonts and biostratigraphy of Upper Ordovician strata along a shelf to basin transect in central Nevada. Journal of Paleontology 74, 1148–60.2.0.CO;2>CrossRefGoogle Scholar
Webers, G. F. 1966. The Middle and Upper Ordovician conodont faunas of Minnesota. Minnesota Geological Survey Special Publication 4, 1123.Google Scholar
Young, S. A., Saltzman, M. R. & Bergström, S. M. 2005. Upper Ordovician (Mohawkian) carbon isotope (δ13C) stratigraphy in eastern and central North America: Regional expression of a perturbation of the global carbon cycle. Palaeogeography, Palaeoclimatology, Palaeoecology 222, 5376.CrossRefGoogle Scholar
Young, S. A., Saltzman, M. R., Bergström, S. M., Leslie, S. A. & Chen, Xu. 2008. Paired δ13Ccarb and δ13Corg records of Upper Ordovician (Sandbian–Katian) carbonates in North America and China: Implications for paleoceanographic change. Palaeogeography, Palaeoclimatology, Palaeoecology 270, 166–78.CrossRefGoogle Scholar
Zhan, Renbin & Jin, Jisuo. 2007. Ordovician–Early Silurian (Llandovery) stratigraphy and Palaeontology of the Upper Yangtze Platform, South China. Beijing: Science Press, 169 pp.Google Scholar
Zhang, Jianhua. 1998. Conodonts from the Guniutan Formation (Llanvirnian) in Hubei and Hunan Provinces, south-central China. Stockholm Contributions in Geology 46, 1161.Google Scholar