Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T06:36:25.509Z Has data issue: false hasContentIssue false

A global event with a regional character: the Early Toarcian Oceanic Anoxic Event in the Pindos Ocean (northern Peloponnese, Greece)

Published online by Cambridge University Press:  22 February 2011

N. KAFOUSIA*
Affiliation:
Department of Geology and Geoenvironment, National University of Athens, Panepistimiopolis, 15784 Athens, Greece
V. KARAKITSIOS
Affiliation:
Department of Geology and Geoenvironment, National University of Athens, Panepistimiopolis, 15784 Athens, Greece
H. C. JENKYNS
Affiliation:
Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK
E. MATTIOLI
Affiliation:
Université Claude Bernard Lyon I, UMR 5125, CNRS, PaléoEnvironnements et PaléobioSphère, Département des Sciences de la Terre, 2 rue Dubois, 69622 Villeurbanne, France
*
Author for correspondence: [email protected]

Abstract

The Early Toarcian (Early Jurassic, c. 183 Ma) was characterized by an Oceanic Anoxic Event (T-OAE), primarily identified by the presence of globally distributed approximately coeval black organic-rich shales. This event corresponded with relatively high marine temperatures, mass extinction, and both positive and negative carbon-isotope excursions. Because most studies of the T-OAE have taken place in northern European and Tethyan palaeogeographic domains, there is considerable controversy as to the regional or global character of this event. Here, we present the first high-resolution integrated chemostratigraphic (carbonate, organic carbon, δ13Ccarb, δ13Corg) and biostratigraphic (calcareous nannofossil) records from the Kastelli Pelites cropping out in the Pindos Zone, western Greece. During the Mesozoic, the Pindos Zone was a deep-sea ocean-margin basin, which formed in mid-Triassic times along the northeast passive margin of Apulia. In two sections through the Kastelli Pelites, the chemostratigraphic and biostratigraphic (nannofossil) signatures of the most organic-rich facies are identified as correlative with the Lower Toarcian, tenuicostatum/polymorphumfalciferum/serpentinum/levisoni ammonite zones, indicating that these sediments record the T-OAE. Both sections also display the characteristic negative carbon-isotope excursion in organic matter and carbonate. This occurrence reinforces the global significance of the Early Toarcian Oceanic Anoxic Event.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al-Suwaidi, A. H., Angelozzi, G. N., Baudin, F., Damborenea, S. E., Hesselbo, S. P., Jenkyns, H. C., Manceñido, M. O., & Riccardi, A. C. 2010. First record of the Early Toarcian Oceanic Anoxic Event from the Southern Hemisphere, Neuquén Basin, Argentina. Journal of the Geological Society, London 167, 633–6.CrossRefGoogle Scholar
Argyriadis, I., De Graciansky, P. C., Marcoux, J. & Ricou, L. E. 1980. The opening of the Mesozoic Tethys between Eurasia and Arabia-Africa. In Géologie des chaînes alpines issues de la Téthys (eds , J. Aubouin, Debelmas, J. & Latreille, M.), pp. 199214. 26th International Geological Congress, Paris, Colloque C5. Bureau de Recherches Géologiques et Minières Mémoire, 115.Google Scholar
Aubouin, J., Bonneau, M., Davidson, G. J., Leboulenger, P., Matesko, S. & Zambetakis, A. 1976. Esquisse structurale de l'Arc égéen externe: des Dinarides aux Taurides. Bulletin de la Societé géologique de France, 7e série 18, 327–36.Google Scholar
Bailey, T. R., Rosenthal, Y., McArthur, J. M. & Van De Schootbrugge, B. 2003. Paleoceanographic changes of the Late Pliensbachian-Early Toarcian interval: a possible link to the genesis of an Oceanic Anoxic Event. Earth and Planetary Science Letters 212, 307–20.Google Scholar
Bernoulli, D., De Graciansky, P. C. D. & Monod, O. 1974. The extension of the Lycian Nappes (SW Turkey) into the Southeastern Aegean Islands. Eclogae Geologicae Helvetiae 67, 3990.Google Scholar
Bernoulli, D. & Jenkyns, H. C. 1974. Alpine, Mediterranean and central Atlantic Mesozoic facies in relation to the early evolution of the Tethys. In Modern and Ancient Geosynclinal Sedimentation (eds Dott, R. H. Jr. & Shaver, R. H.), pp. 129–60. Society of Economic Paleontologists and Mineralogists, Special Publication 19.CrossRefGoogle Scholar
Bernoulli, D. & Jenkyns, H. C. 2009. Ancient oceans and continental margins of the Alpine-Mediterranean Tethys: deciphering clues from Mesozoic pelagic sediments and ophiolites. Sedimentology 56, 149–90.CrossRefGoogle Scholar
Bernoulli, D. & Renz, O. 1970. Jurassic carbonate facies and new ammonite faunas from western Greece. Eclogae Geologicae Helvetiae 65, 573607.Google Scholar
Bodin, S., Mattioli, E., Fröhlich, S., Marshall, J. D., Boutib, L., Lahsini, S. & Redfern, J. 2010. Toarcian carbon isotope shifts and nutrient changes from the Northern margin of Gondwana (High Atlas, Morocco, Jurassic): palaeoenvironmental implications. Palaeogeography, Palaeoclimatology, Palaeoecology 297, 377–90.Google Scholar
Bonneau, M. 1982. Evolution géodynamique de l'Arc égéen depuis le Jurassique supérieur jusqu'au Miocène. Bulletin de la Societé géologique de France, 7e série 24, 229–42.CrossRefGoogle Scholar
Bonneau, M. 1984. Correlation of the Hellenide nappes in the south-east Aegean and their tectonic reconstruction. In The geological Evolution of the Eastern Mediterranean (eds Dixon, J. E., & Robertson, A. H. F.), pp. 517–52. Geological Society of London, Special Publication no. 17.Google Scholar
Bown, P. R. & Young, J. R. 1998. Chapter 2: techniques. In Calcareous Nannofossil Biostratigraphy (ed. Bown, P. R.), pp. 1628. Dordrecht: Kluwer Academic Publishing.CrossRefGoogle Scholar
Bucefalo Palliani, R. & Mattioli, E. 1998. High resolution integrated microbiostratigraphy of the Lower Jurassic (Late Pliensbachian–Early Toarcian) of Central Italy. Journal of Micropalaeontology 17, 153–72.Google Scholar
Bucefalo Palliani, R., Mattioli, E. & Riding, J. 2002. The response of marine phytoplankton and sedimentary organic matter to the early Toarcian (Lower Jurassic) oceanic anoxic event in northern England. Marine Micropaleontology 46, 223–45.CrossRefGoogle Scholar
Channell, J. E. T. & Kozur, H. W. 1997. How many oceans? Meliata, Vardar, and Pindos oceans in Mesozoic Alpine paleogeography. Geology 25, 183–6.2.3.CO;2>CrossRefGoogle Scholar
Clift, P. D. 1992. The collision tectonics of the southern Greek Neotethys. Geologische Rundschau 81, 669–79.Google Scholar
De Wever, P. 1976. Mise en évidence d'importants affleurements de roches éruptives à la base de la nappe du Pinde-Olonos au sein de la ‘Formation à Blocs’ (Péloponnése, Gréce). Annales de la Societé Géologique du Nord 97, 123–6.Google Scholar
De Wever, P. & Baudin, F. 1996. Palaeogeography of radiolarite and organic-rich deposits in Mesozoic Tethys. Geologische Rundschau 85, 310–26.Google Scholar
De Wever, P. & Origlia-Devos, I. 1982. Datation par les radiolaires des niveaux siliceux du Lias de la Série du Pinde–Olonos (Formation de Drimos, Péloponnèse et Grèce continentale). Comptes Rendus de l'Académie des Sciences, Paris, Série 2 294, 1191–8.Google Scholar
Dédé, S., Cili, P., Bushi, E. & Makbul, Y. 1976. Traits fondamentaux de la tectonique de Cukal. Permbledhje Studimesh 20/4, 1533.Google Scholar
Degnan, P. J. & Robertson, A. H. F. 1998. Mesozoic–early Tertiary passive margin evolution of the Pindos Ocean (NW Peloponnese, Greece). Sedimentary Geology 117, 3370.CrossRefGoogle Scholar
Dercourt, J., Ricou, L. E. & Vriellynck, B. (eds) 1993. Atlas Tethys Palaeoenvironmental Maps. Paris: Gauthier-Villars, 307 pp.Google Scholar
Fleury, J. J. 1980. Les zones de Gavrovo-Tripolitza et du Pinde-Olonos (Grèce continentale et Péloponèse du nord). Evolution d'une plate-forme et d'un bassin dans leur cadre alpin. Societé Géologique du Nord, Publication 4, 1473.Google Scholar
Hermoso, M., Le Callonec, L., Minolatti, F., Renard, M. & Hesselbo, S. P. 2009. Expression of the Early Toarcian negative carbon-isotope excursion in separated carbonate microfractions (Jurassic, Paris Basin). Earth and Planetary Science Letters 277, 194203.Google Scholar
Hesselbo, S. P., Gröcke, D. R., Jenkyns, H. C., Bjerrum, C. J., Farrimond, P., Morgans Bell, H. S. & Green, O. R. 2000. Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event. Nature 406, 392–5.CrossRefGoogle ScholarPubMed
Hesselbo, S. P., Jenkyns, H. C., Duarte, L. V. & Oliveira, L. C. V. 2007. Carbon-isotope record of the Early Jurassic (Toarcian) Oceanic Anoxic Event from fossil wood and marine carbonate (Lusitanian Basin, Portugal). Earth and Planetary Science Letters 253, 455–70.Google Scholar
Jenkyns, H. C. 1985. The Early Toarcian and Cenomanian–Turonian anoxic events in Europe: comparisons and contrasts. Geologische Rundschau 74, 505–18.Google Scholar
Jenkyns, H. C. 1988. The early Toarcian (Jurassic) anoxic event: stratigraphic, sedimentary, and geochemical evidence. American Journal of Science 288, 101–51.Google Scholar
Jenkyns, H. C. 2003. Evidence for rapid climate change in the Mesozoic–Palaeogene greenhouse world. Philosophical Transactions of the Royal Society London, Series A 361, 1885–916.Google Scholar
Jenkyns, H. C. 2010. The geochemistry of Oceanic Anoxic Events. Geochemistry, Geophysics, Geosystems 11, Q03004, doi:10.1029/2009GC002788, 30 pp.Google Scholar
Jenkyns, H. C. & Clayton, C. J. 1986. Black shales and carbon isotopes in pelagic sediments from the Tethyan Lower Jurassic. Sedimentology 33, 87106.Google Scholar
Jenkyns, H. C. & Clayton, C. J. 1997. Lower Jurassic epicontinental carbonates and mudstones from England and Wales: chemostratigraphic signals and the early Toarcian anoxic event. Sedimentology 44, 687706.Google Scholar
Jenkyns, H. C., Gale, A. S. & Corfield, R. M. 1994. Carbon- and oxygen-isotope stratigraphy of the English Chalk and Italian Scaglia and its palaeoclimatic significance. Geological Magazine 131, 134.Google Scholar
Jenkyns, H. C., Gröcke, D. R. & Hesselbo, S. P. 2001. Nitrogen isotope evidence for water mass denitrification during the Early Toarcian (Jurassic) Oceanic Anoxic Event. Paleoceanography 16, 593603.Google Scholar
Jenkyns, H. C., Jones, C. E., Gröcke, D. R., Hesselbo, S. P. & Parkinson, D. N. 2002. Chemostratigraphy of the Jurassic System: applications, limitations and implications for palaeoceanography. Journal of the Geological Society, London 159, 351–78.CrossRefGoogle Scholar
Jenkyns, H. C., Matthews, A., Tsikos, H. & Erel, Y. 2007. Nitrate reduction, sulfate reduction, and sedimentary iron isotope evolution during the Cenomanian-Turonian oceanic anoxic event. Paleoceanography 22, PA3208, doi: 10.1029/2006PA001355, pp. 17Google Scholar
Jenkyns, H. C., Sarti, M., Masetti, D. & Howarth, M. K. 1985. Ammonites and stratigraphy of Lower Jurassic black shales and pelagic limestones from the Belluno Trough, Southern Alps, Italy. Eclogae Geologicae Helvetiae 78, 299311.Google Scholar
Karakitsios, V. 1995. The influence of preexisting structure and halokinesis on organic matter preservations and thrust system evolution in the Ionian Basin, Northwest Greece. American Association of Petroleum Geologists Bulletin 79, 960–80.Google Scholar
Karakitsios, V., Tsikos, H., Van Breugel, Y., Bakopoulos, I. & Koletti, L. 2004. Cretaceous Oceanic Anoxic Events in Western Continental Greece. Bulletin of the Geological Society of Greece 36, 846–55.CrossRefGoogle Scholar
Karakitsios, V., Tsikos, H., Van Bruegel, Y., Koletti, L., Sinninghe Damsté, J. S. & Jenkyns, H. C. 2007. First evidence for the late Cenomanian Oceanic Anoxic Event (OAE2, or ‘Bonarelli’ event) from the Ionian Zone, western continental Greece. International Journal of Earth Sciences (Geol. Rundsch.) 96, 343–52.CrossRefGoogle Scholar
Kemp, D. B., Coe, A. L., Cohen, A. S. & Schwark, L. 2005. Astronomical pacing of methane release in the Early Jurassic period. Nature 437, 396–9.Google Scholar
Küspert, W. 1982. Environmental changes during oil shale deposition as deduced from stable isotope ratios. In Cyclic and Event Stratification (eds Einsele, G. & Seilacher, A.), pp. 482501. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Lefèvre, C., Cabanis, B., Ferrière, J., Thiebault, F. & Platevoet, R. 1993. Mise en évidence d'une dualité dans le volcanisme triasique hellénique: apport de la géochimie des éléments traces. Comptes Rendus de l'Académie des Sciences, Paris, Série 2 316, 1311–18.Google Scholar
Little, C. T. S. & Benton, M. J. 1995. Early Jurassic mass extinction: a global long-term event. Geology 23, 495–8.Google Scholar
Littler, K., Hesselbo, S. P. & Jenkyns, H. C. 2010. A carbon-isotope perturbation at the Pliensbachian–Toarcian boundary: evidence from the Lias Group, NE England. Geological Magazine 147, 181–92.CrossRefGoogle Scholar
Lyberis, N., Chotin, P. & Doubinger, J. 1980. Précisions stratigraphiques sur la série du Pinde (Grèce): la durée de sédimentation des ‘radiolarites’. Comptes Rendus de l'Académie des Sciences, Paris, série D 290, 1513–16.Google Scholar
Mailliot, S., Elmi, S., Mattioli, E. & Pittet, B. 2007. Calcareous nannofossil assemblages across Pliensbachian/Toarcian boundary at the Peniche section (Ponta do Trovão, Lusitanian Basin). Ciências da Terra (Lisbon) 16, 114.Google Scholar
Mailliot, S., Mattioli, E., Guex, J. & Pittet, B. 2006. The Early Toarcian Anoxic Crisis, a synchronous event in the Western Tethys? An approach by Quantitative Biochronology (Unitary Associations), applied on calcareous nannofossils. Palaeogeography, Palaeoclimatology, Palaeoecology 240, 562–86.CrossRefGoogle Scholar
Mattioli, E. & Erba, E. 1999. Synthesis of calcareous nannofossil events in Tethyan Lower and Middle Jurassic successions. Rivista Italiana di Paleontologia e Stratigrafia 105, 343–76.Google Scholar
Mattioli, E., Pittet, B., Bucefalo Palliani, R., Röhl, H.-J., Schmid- Röhl, A., Morettini, E., Morgans-Bell, H. S. & Cohen, A. S. 2004. Phytoplankton evidence for the timing and correlation of palaeoceanographical changes during the early Toarcian oceanic anoxic event (Early Jurassic). Journal of the Geological Society, London 161, 685–93.Google Scholar
Mattioli, E., Pittet, B., Suan, G. & Maillot, S. 2008. Calcareous nannoplankton changes across the early Toarcian oceanic anoxic event in the western Tethys. Paleoceanography 23, PA3208, doi:10.1029/2007PA001435, pp. 17Google Scholar
McArthur, J. M., Donovan, D. T., Thirlwall, M. F., Fouke, B. W. & Mattey, D. 2000. Strontium isotope profile of the early Toarcian (Jurassic) oceanic anoxic event, the duration of ammonite biozones, and belemnite palaeotemperatures. Earth and Planetary Science Letters 179, 269–85.Google Scholar
Pe-Piper, G. 1998. The nature of Triassic extension-related magmatism in Greece: evidence from Nd and Pb isotope geochemistry. Geological Magazine 135, 331–48.Google Scholar
Pe-Piper, G. & Hatzipanagiotou, K. 1993. Ophiolitic rocks of the Kerassies-Milia Belt, continental Greece. Ofioliti 18, 157–69.Google Scholar
Rigakis, N. & Karakitsios, V. 1998. The source rock horizons of the Ionian Basin (NW Greece). Marine and Petroleum Geology 15, 593617.Google Scholar
Robertson, A. H. F., Clift, P. D., Degnan, P. J. & Jones, G. 1991. Palaeogeographic and palaeotectonic evolution of the Eastern Mediterranean Neotethys. Palaeogeography, Palaeoclimatology, Palaeoecology 87, 289343.CrossRefGoogle Scholar
Robertson, A. H. F. & Karamata, S. 1994. The role of subduction-accretion processes in the tectonic evolution of the Mesozoic Tethys in Serbia. Tectonophysics 234, 7394.Google Scholar
Röhl, H.-J., Schmid-Röhl, A., Oschmann, W., Frimmel, A. & Schwark, L. 2001. The Posidonia Shale (Lower Toarcian) of SW-Germany: an oxygen-depleted ecosystem controlled by sea level and palaeoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology 165, 2752.Google Scholar
Rosales, I., Robles, S. & Quesada, S. 2004. Elemental and oxygen isotope composition of Early Jurassic belemnites; salinity vs. temperature signals. Journal of Sedimentary Research 74, 342–54.CrossRefGoogle Scholar
Sabatino, N., Neri, R., Bellanca, A., Jenkyns, H. C., Baudin, F., Parisi, G. & Masetti, D. 2009. Carbon-isotope records of the Early Jurassic (Toarcian) oceanic anoxic event from the Valdorbia (Umbria-Marche Apennines) and Monte Mangart (Julian Alps) sections: palaeoceanographic and stratigraphic implications. Sedimentology 56, 1307–28.Google Scholar
Schouten, S., Van Kaam-Peters, H. M. E., Rijpstra, W. I. C., Schoell, M. & Sinninghe Damsté, J. S. 2000. Effects of an oceanic anoxic event on the stable carbon isotopic composition of Early Toarcian carbon. American Journal of Science 300, 122.Google Scholar
Suan, G., Mattioli, E., Pittet, B., Lécuyer, C., Suchéras-Marx, B., Duarte, L. V., Philippe, M., Reggiani, L. & Martineau, F. 2010. Secular environmental precursors to Early Toarcian (Jurassic) extreme climate changes. Earth and Planetary Science Letters 290 (3–4), 448–58.Google Scholar
Suan, G., Mattioli, E., Pittet, B., Mailliot, S. & Lecuyer, C. 2008. Evidence for major environmental perturbation prior to and during the Toarcian (Early Jurassic) oceanic anoxic event from the Lusitanian Basin, Portugal. Paleoceanography 23, PA1202, doi: 10.1029/2007PA001459, pp. 14Google Scholar
Svensen, H., Planke, S., Chevallier, L., Malthe-Sørensen, A. Corfu, F. & Jamtveit, B. 2007. Hydrothermal venting of greenhouse gases triggering Early Jurassic global warming. Earth and Planetary Science Letters 256, 554–66.Google Scholar
Tremolada, F., van de Schootbrugge, B. & Erba, E. 2005. Early Jurassic schizosphaerellid crisis in Cantabria, Spain: implications for calcification rates and phytoplankton evolution across the Toarcian oceanic anoxic event, Paleoceanography 20, PA2011, doi:10.1029/2004PA001120, pp. 11.Google Scholar
Van Bruegel, Y., Baas, M., Schouten, S., Mattioli, E. & Sinninghe Damsté, J. S. 2006. Isorenieratane record in black shales from the Paris Basin, France: constraints on recycling of respired CO2 as a mechanism for negative carbon isotope shifts during the Toarcian oceanic anoxic event. Paleoceanography 21, PA4220, doi: 10.1029/2006PA001305, pp. 8Google Scholar
Van de Schootbrugge, B., McArthur, J. M., Bailey, T. R., Rosenthal, Y., Wright, J. D. & Miller, G. K. 2005. Toarcian oceanic anoxic event: an assessment of global causes using belemnite C isotope records. Paleoceanography 20, PA3008, doi: 10.1029/2004PA001102, pp. 12Google Scholar
Wignall, P. B., McArthur, J. M., Little, C. T. S. & Hallam, A. 2006. Methane release in the Early Jurassic period. Nature 441, E5, doi: 10.1038/nature04905, pp. 1CrossRefGoogle ScholarPubMed
Wignall, P. B., Newton, R. J. & Little, C. T. S. 2005. The timing of paleoenvironmental change and cause-and-effect relationships during the Early Jurassic mass extinction in Europe. American Journal of Science 305, 1014–32.CrossRefGoogle Scholar
Woodfine, R. G., Jenkyns, H. C., Sarti, M., Baroncini, F. & Violante, C. 2008. The response of two Tethyan carbonate platforms to the early Toarcian (Jurassic) oceanic anoxic event: environmental change and differential subsidence. Sedimentology 55, 1011–28.Google Scholar
Wooler, D. A., Smith, A. G. & White, N. 1992. Measuring lithospheric stretching on Tethyan passive margins. Journal of the Geological Society, London 149, 517–32.Google Scholar
Supplementary material: PDF

Kafousia Supplementary Material

Kafousia Supplementary Appendix

Download Kafousia Supplementary Material(PDF)
PDF 5.7 MB