Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T05:47:33.723Z Has data issue: false hasContentIssue false

The geometry, distribution and development of sand bodies in the Miocene-age Frimmersdorf Seam (Garzweiler open-cast mine), Lower Rhine Basin, Germany: implications for seam exploitation

Published online by Cambridge University Press:  23 November 2016

LINDA PRINZ*
Affiliation:
Steinmann Institute, Geology, University of Bonn, Nussallee 8, 53115 Bonn, Germany
TOM McCANN
Affiliation:
Steinmann Institute, Geology, University of Bonn, Nussallee 8, 53115 Bonn, Germany
ANDREAS SCHÄFER
Affiliation:
Steinmann Institute, Geology, University of Bonn, Nussallee 8, 53115 Bonn, Germany
SVEN ASMUS
Affiliation:
RWE Power AG, Stüttgenweg 2, 50935 Köln, Germany
PETER LOKAY
Affiliation:
RWE Power AG, Stüttgenweg 2, 50935 Köln, Germany
*
Author for correspondence: [email protected]

Abstract

The Cenozoic-age Lower Rhine Basin is located in the NW part of the European Cenozoic Rift System. In Miocene times, a combination of warm climatic conditions and basin subsidence resulted in the deposition of up to 100m of lignite (i.e. Main Seam of the Ville Formation). The Main Seam can be subdivided into the Morken, Frimmersdorf and Garzweiler seams, separated by two intercalated transgressive sand units, namely the Frimmersdorf and Neurath sands, deposited in a shallow-marine, tide-dominated environment. The lignite seams of the Ville Formation are currently worked by RWE Power AG, in the Garzweiler II open-cast mine. In the Frimmersdorf Seam (between the Frimmersdorf Sand and the Neurath Sand), the presence of small-scale sand bodies, together with their variable dimensions, affects the industrial exploitation of the seam. Moreover, their irregular distribution complicates their precise and early recognition. Indeed, so-called barren lignite (≥ 17% of sand) and completely clean units can occur within a few metres of each other. Initial classification of these highly variable sand bodies suggests a variety of both pre- and post-depositional causal mechanisms, providing evidence of an extremely complex depositional and post-depositional system. Syn-depositional sand bodies were deposited in a swamp area that was located in the fluvial-dominated sub-environment of an extended tidal estuary. The post-depositional formation of sand bodies is related to the intrusion of fluidized sands from the underlying Frimmersdorf Sand. These sand injectites within the Frimmersdorf Seam are considered to be linked to seismic activity within the Lower Rhine Basin.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham, M. 1994. Untersuchungen zur sedimentologischen Entwicklung der fluviatilen Deckschichten (Miozän/Pliozän) der Rheinischen Braunkohle. Bonner Geowissenschaftliche Schriften 15, 227 pp.Google Scholar
Albers, H. J. & Felder, W. M. 1981. Feuersteingerölle im Oligomiozän der Niederrheinischen Bucht als Ergebnis mariner Abrasion und Carbonatlösungsphasen auf der Kreide-Tafel von Aachen-Südlimburg. In Geologie und Lagerstättenerkundung im Rheinischen Braunkohlenrevier (eds Reiche, E. & Hilden, H.), pp. 469–82. Fortschritte in der Geologie von Rheinland und Westfalen 29.Google Scholar
Andsbjerg, J., Nielsen, L. H., Johannessen, P. N. & Dybkjaer, K. 2001. Divergent development of two neighbouring basins following the Jurassic North Sea doming event: the Danish Central Graben and the Norwegian-Danish Basin. In Sedimentary Environments Offshore Norway – Palaeozoic to Recent (eds Martinsen, O. J. & Dreyer, T.), pp 175–97. NPF Special Publication 10.Google Scholar
Bajor, M. 1958. Beobachtungen über Fazies, synsedimentäre Tektonik und Schwimmsandintrusionen in der Grube Neurath (Niederrhein). In Die Niederrheinische Braunkohlenformation (ed. Ahrens, W.), pp 119–25. Fortschritte in der Geologie von Rheinland und Westfalen 1.Google Scholar
Becker, B. & Asmus, S. 2005. Beschreibung und Korrelation der känozoischen Lockergesteinsschichten der Grundgebirgsbohrungen im Umfeld des Tagebaus Hambach. Scriptum 13, 6174.Google Scholar
Berger, F. 1958. Flözauswaschungen und Schwimmsand-Intrusionen im Tagebau Frimmersdorf-Süd. In Die Niederrheinische Braunkohlenformation (ed. Ahrens, W.), pp. 113–18. Fortschritte in der Geologie von Rheinland und Westfalen 1.Google Scholar
Berggren, W. A., Kent, D. V., Swisher, C. C. & Aubry, M.-P. 1995. A revised Cenozoic geochronology and chronostratigraphy. In Geochronology, Time Scales and Global Stratigraphic Correlation (eds Berggren, W. A., Kent, D.V., Aubry, M.-P. & Handenbol, J.), pp. 129212. SEPM Special Publication 54.Google Scholar
Boenik, W. 1981. Die Gliederung der tertiären Braunkohlendeckschichten in der Ville (Niederrheinische Bucht). In Geologie und Lagerstättenerkundung im Rheinischen Braunkohlenrevier (eds Reiche, E. & Hilden, H.), pp. 193263. Fortschritte in der Geologie von Rheinland und Westfalen 29.Google Scholar
Boersma, J. R., van Gelder, A., de Groot, T. & Puigdefabregas, C. 1981. Formen fluviatiler Sedimentation in neogenen und jüngeren Ablagerungen im Braunkohlentagebau Frechen (Niederrheinische Bucht). In Geologie und Lagerstättenerkundung im Rheinischen Braunkohlenrevier (eds Reiche, E. & Hilden, H.), pp. 275307. Fortschritte in der Geologie von Rheinland und Westfalen 29.Google Scholar
Boyd, R. & Honig, C. 1992. Estuarine sedimentation on the eastern shore of Nova Scotia. Journal of Sedimentary Research 62 (4), 569–83.Google Scholar
Braccini, B., de Boer, W., Hurst, A., Huuse, A., Vigorito, M. & Templeton, G. 2008. Sand injectites. Oilfield Review 20 (2), 3449.Google Scholar
Bungenstock, F. & Schäfer, A. 2009. The Holocene relative sea-level curve for the tidal basin of the barrier island Langeoog, German Bight, Southern North Sea. Global and Planetary Change 66, 3451.Google Scholar
Cartwright, J., James, D., Huuse, M., Vetel, W. & Hurst, A. 2008. The geometry and emplacement of conical sandstone intrusions. Journal of Structural Geology 30 (7), 854–67.Google Scholar
Collier, B. 2002. Detailed stratigraphy and facies analysis of the Paleoproterozoic Athabasca Group along the Shea Creek-Douglas River transect, northern Saskatchewan. Summary of Investigations 2. Saskatchewan Geological Survey, 16 pp.Google Scholar
Dalrymple, R. W. & Choi, K. 2007. Morphologic and facies trends through the fluvial–marine transition in tide-dominated depositional systems: a schematic framework for environmental and sequence-stratigraphic interpretation. Earth-Science Reviews 81 (3–4), 135–74.CrossRefGoogle Scholar
Dalrymple, R. W., Zaitlin, B. A. & Boyd, R. 1992. Estuarine facies models: conceptual basis and stratigraphic implications. Journal of Sedimentary Petrology 62 (6), 1130–46.Google Scholar
Dèzes, P., Schmid, S. M. & Ziegler, P. A. 2004. Evolution of the European Cenozoic rift system: interaction of the Alpine and Pyrenean orogens with their foreland lithosphere. Tectonophysics 389, 133.CrossRefGoogle Scholar
Duranti, D. & Hurst, A. 2004. Fluidization and injection in the deep-water sandstones of the Eocene Alba Formation (UK North Sea). Sedimentology 51, 503–29.Google Scholar
Ethridge, F. G., Jackson, T. J. & Youngberg, A. D. 1981. Floodbasin sequence of a fine-grained meander belt subsystem: the coal-bearing Lower Wasatch and Upper Fort Union formations, southern Powder River Basin, Wyoming. In Recent and ancient nonmarine depositional environments (eds Ethridge, F. G. & Flores, R. M.), pp. 191209. SEPM Special Publication 31.Google Scholar
Ewald, M., Igel, H., Hinzen, K.-G. & Scherbaum, F. 2006. Basin-related effects on ground motion for earthquake scenarios in the Lower Rhine Embayment. Geophysical Journal International 166, 197212.Google Scholar
Feldman, H. R., McCrimmon, G. G. & De Freitas, T. A. 2008. Fluvial to estuarine valley-fill models without age-equivalent sandy shoreline deposits, based on the Clearwater Formation (Cretaceous) at Cold Lake, Alberta, Canada. In Recent Advances in Models of Siliciclastic Shallow-Marine Stratigraphy (eds Hampson, G. J., Steel, R. J., Burgess, P. M. & Dalrymple, R. W.), pp. 443–72. SEPM Special Publication 90.Google Scholar
Fontana, D., Lugli, S., Marchetti Dori, S., Caputo, R. & Stefani, M. 2015. Sedimentology and composition of sands injected during the seismic crisis of May 2012 (Emilia, Italy): clues for source layer identification and liquefaction regime. Sedimentary Geology 325, 158–67.Google Scholar
Gersib, G. A. & McCabe, P. J. 1981. Continental coal-bearing sediments of the Port Hood Formation (Carboniferous), Cape Linzee, Nova Scotia, Canada. In Recent and ancient nonmarine depositional environments (eds Ethridge, F. G. & Flores, R. M.), pp. 95108. SEPM Special Publication 31.Google Scholar
Golte, W. & Heine, K. 1980. Fossile Rieseneiskeilnetze als periglaziale Klimazeugen am Niederrhein. In Niederrheinische Studien (ed. Aymans, G.), 158 pp. Arbeiten zur rheinischen Landeskunde 46.Google Scholar
Gong, W. & Shen, J. 2009. Response of sediment dynamics in the York River Estuary, USA to tropical cyclone Isabel of 2003. Estuarine, Coastal and Shelf Science 84, 6174.Google Scholar
Grein, M., Oehm, C., Konrad, W., Utescher, T., Kunzmann, L. & Roth-Nebelsick, A. 2013. Atmospheric CO2 from the late Oligocene to early Miocene based on photosynthesis data and fossil leaf characteristics. Palaeogeography, Palaeoclimatology, Palaeoecology 374, 4151.Google Scholar
Grützner, C., Fischer, P. & Reicherter, K. 2016. Holocene surface ruptures of the Rurrand Fault, Germany – insights from palaeoseismology, remote sensing and shallow geophysics. Geophysical Journal International 204, 1662–77.CrossRefGoogle Scholar
Hager, H. 1986. Peat accumulation and syngenetic clastic sedimentation in the Tertiary of the Lower Rhine Basin (F. R. Germany). Mémoires de la Société Géologique de France 149, 51–6.Google Scholar
Hager, H. 1993. The origin of the Tertiary lignite deposits in the Lower Rhine region, Germany. International Journal of Coal Geology 23, 251–62.Google Scholar
Hager, H., Kothen, H. & Spann, R. 1981. Zur Setzung der rheinischen Braunkohle und ihrer klastischen Begleitschichten. In Geologie und Lagerstättenerkundung im Rheinischen Braunkohlenrevier (eds Reiche, E. & Hilden, H.), pp. 319–52. Fortschritte in der Geologie von Rheinland und Westfalen 29.Google Scholar
Hardenbol, J., Thierry, J., Farley, M. B., Jacquin, T., De Graciansky, C. & Vail, P. R. 1998. Mesozoic and Cenozoic sequence chronostratigraphic framework of European basins. In Mesozoic and Cenozoic Sequence Stratigraphy of European Basins (eds de Graciansky, P. C., Hardenbol, J., Jacquin, T. & Vail, P. R.), pp. 313, 763–81 and chart supplements. SEPM Special Publication 60.Google Scholar
Hinzen, K.-G. 2003. Stress field in the Northern Rhine area, Central Europe, from earthquake fault plane solutions. Tectonophysics 377, 325–56.Google Scholar
Hoffmann, G. & Reicherter, K. 2012. Soft-sediment deformation of Late Pleistocene sediments along the southwestern coast of the Baltic Sea (NE Germany). International Journal of Earth Sciences 101, 351–63.CrossRefGoogle Scholar
Hori, K., Saito, Y., Zhao, Q., Cheng, X., Wang, P., Sato, Y. & Li, C. 2001. Sedimentary facies of the tide-dominated paleo-Changjiang (Yangtze) estuary during the last transgression. Marine Geology 177, 331–51.CrossRefGoogle Scholar
Hovikoski, J., Räsänen, M., Gingras, M., Roddaz, M., Brusset, S., Hermoza, W., Romero Pittman, L. & Lertola, K. 2005. Miocene semidiurnal tidal rhythmites in Madre de Dios, Peru. Geology 33 (3), 177–80.Google Scholar
Hurst, A. & Cronin, B. T. 2001. The origin of consolidation laminae and dish structures in some deep-water sandstones. Jounral of Sedimentary Research 71 (1), 136–43.Google Scholar
Hurst, A., Scott, A. & Vigorito, M. 2011. Physical characteristics of sand injectites. Earth-Science Reviews 106, 215–46.Google Scholar
Huuse, M., Lykke-Andersen, H. & Michelsen, O. 2001. Cenozoic evolution of the eastern Danish North Sea. Marine Geology 177, 243–69.Google Scholar
Jasinge, D., Ranjith, P. G. & Choi, S. K. 2011. Effects of effective stress changes on permeability of Latrobe Valley brown coal. Fuel 90, 1292–300.Google Scholar
Jolly, R. & Lonergan, L. 2002. Mechanisms and controls on the formation of sand intrusions. Journal of the Geological Society 159, 605–17.Google Scholar
Jonk, R., Hurst, A., Duranti, D., Parnell, J., Mazzini, A. & Fallick, A. E. 2005. Origin and timing of sand injection, petroleum migration, and diagenesis in Tertiary reservoirs, south Viking Graben, North Sea. AAPG Bulletin 89 (3), 329–57.CrossRefGoogle Scholar
Klett, M., Eichhorst, F. & Schäfer, A. 2002. Facies interpretation from well logs applied to the Tertiary Lower Rhine Basin fill. In Rift Tectonics and Syngenetic Sedimentation – The Cenozoic Lower Rhine Graben and Related Structures (eds. Schäfer, A. & Siehl, A.), pp. 167–76. Netherlands Journal of Geoscience 81.Google Scholar
Klostermann, J., Kremers, J. & Röder, R. 1998. Rezente tektonische Bewegungen in der Niederrheinischen Bucht. In Der Untergrund der Niederrheinischen Bucht, pp. 557–71. Fortschritte in der Geologie von Rheinland und Westfalen 37 Google Scholar
Lowe, D. R. 1975. Water escape structures in coarse-grained sediments. Sedimentology 22, 157204.Google Scholar
Madon, M., Abu Bakar, Z. A. & Ismail, H. H. 2010. Jurassic-Cretaceous fluvial channel and floodplain deposits along the Karak-Kuantan Highway, central Pahang (Peninsular Malaysia). Bulletin of the Geological Society of Malaysia 56, 914.Google Scholar
Mazzini, A., Jonk, R., Duranti, D., Parnell, J., Cronin, B. & Hurst, A. 2003. Fluid escape from reservoirs: implications from cold seeps, fractures and injected sands – Part I. The fluid flow system. Journal of Geochemical Exploration, 78–79, 293–6.Google Scholar
Miall, A. 1996. The Geology of Fluvial Deposits: Sedimentary Facies, Basin Analysis, and Petroleum Geology. Berlin: Springer, 582 pp.Google Scholar
Michelsen, O., Thomsen, E., Danielsen, M., Heilmann-Clausen, C., Jordt, H. & Laursen, G. V. 1998. Cenozoic sequence stratigraphy in the eastern North Sea. In Mesozoic and Cenozoic Sequence Stratigraphy of European Basins (eds Graciansky, P. D. de, Hardenbol, J., Jacquin, T. & Vail, P. R.), pp. 91118. SEPM Special Publication 60.Google Scholar
Mosbrugger, V., Gee, C. T., Belz, G. & Ashraf, A. R. 1994. Three-dimensional reconstruction of an in-situ Miocene peat forest from the Lower Rhine Embayment, northwestern Germany – new methods in palaeovegetation analysis. Palaeogeography, Palaeoclimatology, Palaeoecology 110, 295317.Google Scholar
Mosbrugger, V., Utescher, T. & Dilcher, D. L. 2005. Cenozoic continental climatic evolution of Central Europe. Proceedings of the National Academy of Sciences of the United States of America 102 (42), 14964–6.Google Scholar
Nickel, E. 2003. Oligozäne Beckendynamik und Sequenzstratigraphie am Südrand des Nordwesteuropäischen Tertiärbeckens. Ph.D. thesis, Universität Bonn, Bonn. Published thesis.Google Scholar
Obermeier, S. F. 1996. Use of liquefaction-induced features for paleoseismic analysis — an overview of how seismic liquefaction features can be distinguished from other features and how their regional distribution and properties of source sediment can be used to infer the location and strength of Holocene paleo-earthquakes. Engineering Geology 44, 176.Google Scholar
Owen, G. 1996. Experimental soft-sediment deformation: structures formed by the liquefaction of unconsolidated sands and some ancient examples. Sedimentology 43, 279–93.Google Scholar
Petersen, G. L. 1968. Flow structures in sandstone dikes. Sedimentary Geology 2, 177–90.Google Scholar
Petzelberger, B. 1994. Die marinen Sande im Tertiär der südlichen Niederrheinischen Bucht. Bonner Geowissenschaftliche Schriften 14, 112 pp.Google Scholar
Prinz, L., Schäfer, A., McCann, T., Utescher, T., Lokay, P. & Asmus, S. In press. Facies analysis and depositional model of the Serravallian-age Neurath Sand, Lower Rhine Basin (W Germany). Netherlands Journal of Geosciences. Google Scholar
Prodehl, C., Mueller, S., Glahn, A., Gutscher, M. & Haak, V. 1992. Lithospheric cross sections of the European Cenozoic rift system. Tectonophysics 208, 113–38.Google Scholar
Rasmussen, E. S., Dybkjaer, K. & Piasecki, S. 2010. Lithostratigraphy of the Upper Oligocene – Miocene succession of Denmark. Geological Survey of Denmark and Greenland Bulletin 22, 95 pp.Google Scholar
Rasser, M. W., Harzhauser, M., Anistratenko, O. Y., Anistratenko, V. Y., Bassi, D., Belak, M., Berger, J.-P., Bianchini, G., Čičić, S., Ćosović, V., Doláková, N., Drobne, K., Filipescu, S., Gürs, K., Hladilová, Š., Hrvatovć, H., Jelen, B., Kasiński, J. R., Kováč, M., Kralj, P., Marjanac, T., Márton, E., Mietto, P., Moro, A., Nagymarosy, A., Nebelsick, J. H., Nehyba, S., Ogorelec, B., Oszczypko, N., Pavelić, D., Piwocki, M., Poljak, M., Pugliese, N., Redžepović, R., Rifelj, H., Roetzel, R., Skaberne, D., Sliva, L., Standke, G., Tunis, G., Vass, D., Wagreich, M. & Wesselingh, F. 2008. Palaeogene and Neogene. In The Geology of Central Europe, Volume 2: Mesozoic & Cenozoic (ed. McCann, T.), pp. 1031–140. London: Geological Society of London.Google Scholar
Schäfer, A. 2010. Klastische Sedimente - Fazies und Sequenzstratigraphie. Heidelberg: Spektrum Akademischer Verlag, 416 pp.Google Scholar
Schäfer, A., Hilger, D., Gross, G. & Von der Hocht, F. 1996. Cyclic sedimentation in Tertiary Lower-Rhine Basin (Germany) – the Liegendrücken of the brown-coal open-cast Fortuna mine. Sedimentary Geology 103, 229–47.CrossRefGoogle Scholar
Schäfer, A. & Utescher, T. 2014. Origin, sediment fill, and sequence stratigraphy of the Cenozoic Lower Rhine Basin (Germany) interpreted from well logs. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 165 (2), 287314.Google Scholar
Schäfer, A., Utescher, T., Klett, M. & Valdivia-Manchego, M. 2005. The Cenozoic Lower Rhine Basin – rifting, sedimentation, and cyclic stratigraphy. International Journal of Earth Sciences 94, 621–39.Google Scholar
Schäfer, A., Utescher, T. & Mörs, T. 2004. Stratigraphy of the Cenozoic Lower Rhine Basin, northwestern Germany. Newsletters on Stratigraphy 40 (1/2), 73110.Google Scholar
Schneider, H. & Thiele, S. 1965. Geohydrologie des Erftgebietes. Düsseldorf: Ministerium für Ernährung, Landwirtschaft und Forsten Nordrhein-Westfalen, 185 pp.Google Scholar
Schumacher, M. E. 2002. Upper Rhine Graben: Role of preexisting structures during rift evolution. Tectonics 21 (1), 6-1–6-17.Google Scholar
Scott, A., Vigorito, M. & Hurst, A. 2009. The process of sand injection: internal structures and relationships with host strata (Yellowbank Creek Injectite Complex, California, U.S.A.). Journal of Sedimentary Research 79, 568–83.CrossRefGoogle Scholar
Shanley, K. W., McCabe, P. J. & Hettinger, R. D. 1992. Tidal influence in Cretaceous fluvial strata from Utah, USA: a key to sequence stratigraphic interpretation. Sedimentology, 39, 905–30.Google Scholar
Sissingh, W. 2003. Tertiary paleogeographic and tectonostratigraphic evolution of the Rhenish Triple Junction. Palaeogeography, Palaeoclimatology, Palaeoecology 196, 229–63.CrossRefGoogle Scholar
Somerton, W. H., Söylemezoglu, I. M. & Dudley, R. C. 1975. Effect of stress on permeability of Coal. International Journal of Rock Mechanics and Mining Sciences 12, 129–45.Google Scholar
Steffen, H., Kaufmann, G. & Wu, P. 2006. Three-dimensional finite-element modeling of the glacial isostatic adjustment in Fennoscandia. Earth and Planetary Science Letters 250, 358–75.CrossRefGoogle Scholar
Taylor, G. H., Teichmüller, M., Davis, A., Diessel, C. F. K., Littke, R. & Robert, P. 1998. Organic Petrology. Berlin: Gebrüder Borntraeger, 704 pp.Google Scholar
Teichmüller, M. 1958a. Rekonstruktion verschiedener Moortypen des Hauptflözes der niederrheinischen Braunkohle. In Die Niederrheinische Braunkohlenformation (ed. Ahrens, W.), pp. 559612. Fortschritte in der Geologie von Rheinland und Westfalen 2.Google Scholar
Teichmüller, R. 1958b. Die Niederrheinische Braunkohlenformation: Stand der Untersuchung und offene Fragen. In Die Niederrheinische Braunkohlenformation (ed. Ahrens, W.), pp. 721–50. Fortschritte in der Geologie von Rheinland und Westfalen 2.Google Scholar
Teichmüller, R. 1974. Die tektonische Entwicklung der Niederrheinischen Bucht. In Approaches to Taphrogenesis (eds Illies, J. H. & Fuchs, K.), pp. 269–85. Stuttgart: Schweizerbart.Google Scholar
Thöle, H., Gaedicke, C., Kuhlmann, G. & Reinhardt, L. 2014. Late Cenozoic sedimentary evolution of the German North Sea – a seismic stratigraphic approach. Newsletters on Stratigraphy 47 (3), 299329.CrossRefGoogle Scholar
Thome, K. N. 1959. Das Inlandeis am Niederrhein. In Pliozän und Pleistozän am Mittel- und Niederrhein (eds Teichmüller, R. & van der Brelie, G.), pp. 197246, Fortschritte in der Geologie von Rheinland und Westfalen, 4.Google Scholar
Uncles, R. J. 2010. Physical properties and processes in the Bristol Channel and Severn Estuary. Marine Pollution Bulletin 61 (1–3), 520.Google Scholar
Utescher, T., Ashraf, A. R., Dreist, D., Dybkjaer, K., Mosbrugger, V., Pross, J. & Wilde, V. 2012. Variability of Neogene continental climates in northwest Europe – a detailed study based on microfloras. Turkish Journal of Earth Sciences 21, 289314.Google Scholar
Utescher, T., Ashraf, A.R. & Mosbrugger, V. 1992. Zur Faziesentwicklung im Neogen der Niederrheinischen Bucht. In Palaeovegetational Development in Europe (ed. Kovar-Eder, J.), pp. 235–43. Vienna: Naturhistorisches Museum.Google Scholar
Utescher, T., Mosbrugger, V. & Ashraf, A. R. 2000. Terrestrial climate evolution in Northwest Germany over the last 25 million years. Palaios 15 (5), 430–49.Google Scholar
Utescher, T., Mosbrugger, V., Ivanov, D. & Dilcher, D. L. 2009. Present-day climatic equivalents of European Cenozoic climates. Earth and Planetary Science Letters 284, 544–52.CrossRefGoogle Scholar
Valdivia-Manchego, M. 1994. Rechnergestützte stereophotogrammetrische Aufnahme und Auswertung fluvialer Sedimentstrukturen im Tertiär der Niederrheinischen Bucht. Zentralblatt für Geologie und Paläontologie Teil 1, 1100–1026.Google Scholar
van Balen, R. T., Busschers, F. S. & Tucker, G. E. 2010. Modeling the response of the Rhine-Meuse fluvial system to Late Pleistocene climate change. Geomorphology 114, 440–52.Google Scholar
Wing, S. L. 1984. Relation of paleovegetation to geometry and cyclicity of some fluvial carbonaceous deposits. Journal of Sedimentary Petrology 54 (1), 5266.Google Scholar
Woodroffe, C. D. 2000. Deltaic and estuarine environments and their Late Quaternary dynamics on the Sunda and Sahul shelves. Journal of Asian Earth Sciences 18, 393413.Google Scholar
Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. 2001. Trends, rhythms, and aberrations in global climate 65Ma to present. Science 292, 686–93.Google Scholar
Zagwijn, W. H. 1989. The Netherlands during the Tertiary and the Quaternary: a case history of coastal lowland evolution. Geologie en Mijnbouw 68, 107–20.Google Scholar
Zagwijn, W. H. & Hager, H. 1987. Correlations of continental and marine Neogene deposits in the south-eastern Netherlands and the Lower Rhine District. Mededelingen van de Werkgroep voor Tertiaire en Kwartaire Geologie 24 (1–2), 5978.Google Scholar
Ziegler, P. A. 1992. European Cenozoic rift system. Tectonophysics 208, 91111.Google Scholar
Ziegler, P. A., Cloetingh, S. & van Wees, J.-D. 1995. Dynamics of intra-plate compressional deformation: the Alpine foreland and other examples. Tectonophysics 252, 759.Google Scholar
Ziegler, P. A. & Dèzes, P. 2007. Cenozoic uplift of Variscan Massifs in the Alpine foreland. Global and Planetary Change 58, 237–69.Google Scholar