Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T23:42:52.190Z Has data issue: false hasContentIssue false

Geochronology of the Cambrian: a precise Middle Cambrian U–Pb zircon date from the German margin of West Gondwana

Published online by Cambridge University Press:  15 April 2014

ED LANDING*
Affiliation:
New York State Museum, 222 Madison Avenue, Albany, New York 12230, USA
GERD GEYER
Affiliation:
Institut für Geographie und Geologie, Lehrstuhl für Geodynamik und Geomaterialforschung, Bayerische Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany Department of Earth Sciences (Palaeobiology), Uppsala University, Villavägen 16, 752 36 Uppsala, Sweden
ROBERT BUCHWALDT
Affiliation:
Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
SAMUEL A. BOWRING
Affiliation:
Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
*
Author for correspondence: [email protected]

Abstract

A volcanic tuff 1.0 m above the base of the Triebenreuth Formation in the Franconian Forest provides the first precise and biostratigraphically bracketed date within the traditional Middle Cambrian. The first illustration of fossils from the Triebenreuth Formation in this report and their discussion allow a more highly refined correlation within the Middle Cambrian. A weighted mean 206Pb–238U date of 503.14±0.13/0.25/0.59 Ma on zircons from this subaerial pyroclastic tuff was determined by U–Pb chemical abrasion isotope dilution mass spectrometry (CA-TIMS) techniques. At c. 6.0–7.0 Ma younger than the base of the traditional Middle Cambrian in Avalonia, the new West Gondwanan date from east-central Germany suggests that estimates of 500 Ma for the base of the traditional Upper Cambrian and 497 Ma on the base of the Furongian Series may prove to be too ‘old’. Biostratigraphically well-bracketed dates through most of the Middle Cambrian/Series 3 and below the upper Upper Cambrian/upper Furongian Series do not exist. An earlier determined 494.4±3.8 Ma date from the Southwell Group of Tasmania may actually prove to be a reasonable estimate for the age of the base of the traditional Upper Cambrian. Until high precision dates are determined on the base of the traditional Upper Cambrian and base of the Furongian Series, the rates of biotic replacements and geological developments and the durations of biotic zones in the Middle/Series 3 and Upper Cambrian/Furongian Series remain as ‘best guesses’.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Álvaro, J. J., Rouchy, J. M., Bechstädt, T., Boucot, A., Boyer, F., Debrenne, F., Moreno-Eiris, E., Perejón, A. & Vennin, E. 2000. Evaporitic constraints on the southward drifting of the western Gondwana margin during Early Cambrian times. Palaeogeography, Palaeoclimatology, Palaeoecology 160, 105–22.Google Scholar
Behr, H., Engel, W. & Franke, W. 1980. Guide to Excursion No. 2, Münchberger Gneismasse und Bayerischer Wald. International Conference on the Effect of Deformation on Rocks, Göttingen, 1980. Microtectonics 80, 100 pp.Google Scholar
Blumenstengel, H. 1980. Zur paläontologie und biostratigraphie der Heinersdorfer Serie (Kambrium) im Thüringer Schiefergebirge. Freiberger Forschungshefte 348, 61–8.Google Scholar
Bowring, J. F., McLean, N. M. & Bowring, S. A. 2011. Engineering infrastructure for U-Pb geochronology: Tripoli and U-Pb redox. Geochemistry, Geophysics, Geosystems 12, QOAA19, doi: 10.102912010G663479.Google Scholar
Bowring, S. A. & Schmitz, M. D. 2003. High-precision U-Pb zircon geochronology and the stratigraphic record. In Zircon: Experiments, Isotopes, and Trace Element Investigations (eds Hanchae, J. M. & Huskins, P. W. O.), pp. 305–26. Reviews in Mineralogy and Geochemistry 53.Google Scholar
Brongniart, A. 1822. Les trilobites. In Historie Naturelle des Crustacés Fossils, sous les Rapports Zoölogiques et Géologiques (eds Brongniart, A. & Desmarest, A. G.), pp. 165. Paris & Strasbourg: F. G. Levrault, 154 pp.Google Scholar
Burrett, C., Long, J. & Stait, B. 1991. Early–Middle Palaeozoic biogeography of Asian terranes derived from Gondwana. In Palaeozoic Palaeogeography and Biogeography (eds McKerrow, W. S. & Scotese, C. R.), pp. 163–74. Geological Society of London, Memoir no. 12.Google Scholar
Chernysheva, N. E. 1962. Kembriyskie trilobity semeystva Oryctocephalidae. In Problemy Neftegazonosnosti Sovetskoy Arktiki. Paleontologiya i Biostratigrafiya 3 (ed. Shvedov, N. A.), pp. 3–52. Trudy nauchno-issledovatel'skiy instituta geologii Arktikii (NIIGA) 127(3).Google Scholar
Cooper, R. A. & Sadler, P. M. 2004. The Ordovician period. In A Geologic Time Scale 2004 (eds Gradstein, F., Ogg, J. & Smith, A.), pp. 165–87. New York: Cambridge University Press.Google Scholar
Crowe, B. M. & Fisher, R. V. 1973. Sedimentary structures in base-surge deposits with special reference to cross-bedding, Ubehebe Craters, Death Valley, California. Geological Society of America Bulletin 84, 663–82.Google Scholar
Davidek, K., Landing, E., Bowring, S. S., Westrop, S. R., Rushton, A. W. A., Fortey, R. A. & Adrain, . 1998. New uppermost Cambrian U-Pb date from Avalonian Wales and age of the Cambrian–Ordovician boundary. Geological Magazine 135, 305–9.Google Scholar
Dawson, J. W. 1868. Acadian Geology: The Geological Structure, Organic Remains, and Mineral Resources of Nova Scotia, New Brunswick, and Prince Edward Island, Second Edition. London: Macmillan, 694 pp.CrossRefGoogle Scholar
Elicki, O. 1994. Lower Cambrian carbonates from eastern Germany: palaeontology, stratigraphy and palaeogeography. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 464, 145–73.Google Scholar
Elicki, O. 1997. Biostratigaphic data of the German Cambrian–present state of knowledge. Freiberger Forschungshefte C 466, 155–65.Google Scholar
Emmert, U., Horstig, G. von, Weinelt, W., Berger, K. & Brunnacker, K. 1960. Erläuterungen zur Geologischen Karte von Bayern 1:25 000; Blatt Nr. 5835 Stadtsteinach. München: Bayerisches Geologisches Landesamt, 279 pp.Google Scholar
Encarnación, J., Rowell, A. J. & Grunow, A. M. 1999. A U-Pb age for the Cambrian Taylor Formation, Antarctica: implications for the Cambrian time scale. Journal of Geology 107, 497504.Google Scholar
Fletcher, T. P. 2003. Ovatoryctocara granulata, the key to a global Cambrian stage boundary and the correlation of the olenellid, redlichiid, and paradoxidid realms. Special Papers in Palaeontology 70, 73102.Google Scholar
Fortey, R. A., Landing, E. & Skevington, D. 1982. Cambrian–Ordovician boundary sections in the Cow Head Group, western Newfoundland. In The Cambrian–Ordovician Boundary: Sections, Fossil Distributions, and Correlations (eds Bassett, M. G. & Dean, W. T.), pp. 95129. National Museum of Wales, Geological Series No. 3.Google Scholar
Gaertner, H. R., Horstig, G. von, Stettner, G. & Wurm, A. 1968. Saxothuringikum in Bavaria. International Geological Congress, 23th Session, Guide to excursion C 34. Hannover: Bundesanstalt für Bodenforschung, 160 pp.Google Scholar
Gandl, J. 1998. Neue daten zum jüngeren Paläozoikum NE-Bayerns und angrenzender Gebiete – Faziesentwicklung und geotektonische Konsequenzen. Geologica Bavarica 103, 19273.Google Scholar
Geyer, G. 1990. Die marokkanischen Elliosocephalidae (Trilobita: Redlichiida). Beringeria 3, 363 pp.Google Scholar
Geyer, G. 2005. The base of a revised Middle Cambrian: are suitable concepts for a series boundary in reach. Geosciences Journal 9, 8199.Google Scholar
Geyer, G. 2010. The Cambrian and Ordovician of the Franconian Forest. In Prague 2010–The 15th Field Conference of the Cambrian Stage Subcommission Working Group. International Subcommission on Cambrian Stratigraphy, 4–11 June, 2010. Abstracts and Excursion Guide (eds Fatka, O. & Budil, P.), pp. 7892. Prague: Czech Geological Survey.Google Scholar
Geyer, G. & Elicki, O. 1995. The Lower Cambrian trilobites from the Görlitz Synclinorium (Germany) – review and new results. Paläontologische Zeitschrift 69, 87119.Google Scholar
Geyer, G., Elicki, O., Fatka, O. & Żylinska, A. 2008. Cambrian. In The Geology of Central Europe. Volume 1: Precambrian and Palaeozoic (ed. McCann, T.), pp. 155202. London: The Geological Society.Google Scholar
Geyer, G. & Landing, E. 1995. The Cambrian of the Moroccan Atlas regions. In Morocco ‘95–The Lower–Middle Cambrian standard of western Gondwana (eds Geyer, G. & Landing, E.), pp. 746. Beringeria Special Issue 2.Google Scholar
Geyer, G. & Landing, E. 2004. A unified Lower–Middle Cambrian chronostratigraphy for West Gondwana. Acta Geologica Polonica 54, 179218.Google Scholar
Geyer, G. & Landing, E. 2006. Latest Ediacaran and Cambrian of the Moroccan Atlas regions. In Morocco 2006. Ediacaran–Cambrian Depositional Environments and Stratigraphy of the Western Atlas Regions. Explanatory Description and Field Excursion Guide (eds Geyer, G. & Landing, E.), pp. 975. Beringeria Special Issue 6.Google Scholar
Geyer, G. & Wiefel, H. 1997. Fränkisch-Thüringisches Schiefergebirge. In Stratigraphie von Deutschland II. Teil I: Thüringen, Sachsen, Ostbayern (ed. Deutschlands, Stratigraphische Kommission), pp. 57102. Courier Forschungsinstitut Senckenberg 200.Google Scholar
Göthel, M. 2001. Das autochthone und allochthone Paläozoikum des “Görlitzer Schiefergebirges” (Mitteleuropäische Varisziden, Deutschland). Zeitschrift für geologische Wissenschaften 29, 5573.Google Scholar
Harvey, T. H. P., Williams, M., Condon, D. J., Wilby, P. R., Siveter, D. J., Rushton, A. W. A., Leng, M. J. & Gabbott, S. E. 2011. A refined chronology for the Cambrian succession of southern Britain. Journal of the Geological Society, London 168, 705–16.Google Scholar
Hawle, I. & Corda, A. J. C. 1847. Prodrom einer Monographie der böhmischen Trilobiten. Abhandlungen der königlich böhmischen Gesellschaft der Wissenschaften, Abhandlungen 5, 176 pp.Google Scholar
Heuse, T., Blumenstengel, H., Elicki, O., Geyer, G., Hansch, W., Maletz, J., Sarmiento, G. N. & Weyer, D. 2010. The faunal province of the southern margin of the Rheic Ocean. In Pre-Mesozoic Geology of Saxo-Thuringia from the Cadomian Active Margin to the Variscan Orogen (eds Linnemann, U. & Romer, R. L.), pp. 99170. Frankfurt: Schweizerbart Science Publishers.Google Scholar
Hiess, J., Concon, D. J., McLean, N. & Noble, S. R. 2012. 238U/235U systematics in terrestrial uranium-bearing minerals. Science 235, 1610–4.Google Scholar
Horstig, G. von. 1954. Das Mittelkambrium von Stadtsteinach im Frankenwald. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 1954, 448–56.Google Scholar
Hupé, P. 1953. Contribution à l'étude du Cambrien inférieur et du Précambrien III de l'Anti-Atlas marocain. Notes et Mémoirs de la Service géologique du Maroc 103, 402 pp.Google Scholar
Isachsen, C. E., Bowring, S. A., Landing, E. & Samson, S. D. 1994. New constraint on the division of Cambrian time. Geology 22, 496–8.Google Scholar
Jaffey, A. H., Flynn, K. F., Glendein, L. E., Bentley, W. C. & Essling, A. M. 1971. Precision measurements of half-lives and specific activities of 235U and 238U. Physical Reviews, C4 1, 889906.Google Scholar
Jago, J. B., Reid, K. O., Quilty, P. G., Green, G. R. & Daily, B. 1972. Fossiliferous Cambrian limestone from within the Mount Read volcanics, Mt Lyell Mine area, Tasmania. Journal of the Geological Society of Australia 19, 370–82.Google Scholar
Jago, J. B. & McNeil, A. W. 1997. A late Middle Cambrian shallow-water trilobite fauna from the Mt Read Volcanics, northwestern Tasmania. Papers and Proceedings of the Royal Society of Tasmania 131, 8590.Google Scholar
Kröner, U., Mansy, J.-L., Mazur, S., Aleksandrowski, P., Hann, H. P., Huckriede, H., Lacquement, F., Lamarche, J., Ledru, P., Pharoah, T. C., Zedler, H., Zeh, A. & Zulauf, G. 2008 Variscan tectonics. In The Geology of Central Europe. Volume 1: Precambrian and Palaeozoic (ed. McCann, T.), pp. 599664. London: The Geological Society.Google Scholar
Landing, E. 1993. Cambrian–Ordovician boundary in the Taconic allochthon, eastern New York, and its interregional correlation. Journal of Paleontology 67, 119.CrossRefGoogle Scholar
Landing, E. 1996. Avalon―Insular continent by the latest Precambrian. In Avalonian and Related peri-Gondwanan Terranes of the Circum-North Atlantic (eds Nance, R. D., R. D. & and Thompson, M.), pp. 2764. Geological Society of America, Special Paper 304.Google Scholar
Landing, E. 2007. East Laurentia 2007―a pre-meeting statement. In Ediacaran–Ordovician of east Laurentia—S. W. Ford Memorial Volume (ed. Landing, E.), pp. 34. New York State Museum Bulletin 510.Google Scholar
Landing, E., Barnes, C. R. & Stevens, R. K. 1986. Tempo of earliest Ordovician graptolite faunal succession: conodont-based correlations from the Tremadocian of Quebec. Canadian Journal of Earth Sciences 22, 1928–49.Google Scholar
Landing, E., Bowring, S. A., Davidek, K., Rushton, A. W. A., Fortey, R. A. & Wimbledon, W. A. P. 2000. Cambrian–Ordovician boundary age and duration of the lowest Ordovician Tremadoc Series based on U–Pb zircon dates from Avalonian Wales. Geological Magazine 137, 485–94.Google Scholar
Landing, E., Davidek, K., Westrop, S. R., Geyer, G. & Heldmaier, W. 1998. Duration of the Early Cambrian: U-Pb ages of volcanic ashes from Avalon and Gondwana. Canadian Journal of Earth Sciences 35, 329–38.Google Scholar
Landing, E., Geyer, G., Brasier, M. D. & Bowring, S. A. 2013. Cambrian Evolutionary Radiation: context, correlations, and chronostratigraphy―overcoming deficiencies of the first appearance datum (FAD) concept. Earth-Science Reviews 123, 133–77.Google Scholar
Landing, E., Geyer, G. & Heldmaier, W. 2006. Distinguishing eustatic and epeirogenic controls on Lower–Middle Cambrian boundary successions in West Gondwana (Morocco and Iberia). Sedimentology 54, 899918.Google Scholar
Landing, E., Johnson, S. C. & Geyer, G. 2008. Faunas and Cambrian volcanism on the Avalonian marginal platform, southern New Brunswick. Journal of Paleontology 82, 884905.Google Scholar
Landing, E., Westrop, S. R. & Bowring, S. A. 2013. Reconstructing the Avalonia palaeocontinent in the Cambrian: a 519 Ma caliche in South Wales and transcontinental middle Terreneuvian sandstones. Geological Magazine 150, 1022–46.Google Scholar
Linnemann, U., d’Lemos, R., Drost, K., Jeffries, T., Gerdes, A., Romer, R. L., Samson, S. D. & Strachen, R. A. 2008. Cadomian tectonics. In The Geology of Central Europe. Volume 1: Precambrian and Palaeozoic (ed. McCann, T.), pp 599664. London: The Geological Society.Google Scholar
Linnemann, U. & Schauer, M. 1999. Die Entstehung der Elbezone vor dem Hintergrund der cadomischen und variszischen Geschichte des Saxothuringischen Terranes –konzequenzen aus einer abgedeckten geologischen Karte. Zeitschrift für geologischen Wissenschaften 27, 529–61.Google Scholar
Love, L. G. & Amstutz, G. C. 1966. Review of microscopic pyrite. Fortschritt der Mineralogie 43, 273309.Google Scholar
Ludwig, V. 1969. Lithologische Untersuchung des Kambriums im Frankenwald (Bayern). Geologisches Jahrbuch 87, 89159.Google Scholar
Mattinson, J. M. 2005. Zircon U/Pb chemical abrasion CA-TIMS method; combined annealing and multi-step dissolution analysis for improved precision and accuracy of zircon ages. Chemical Geology 220, 4766.Google Scholar
McLean, N. M., Bowring, J. F. & Bowring, S. A. 2011. An algorithm for U-Pb isotope dilution data reduction and uncertainty propagation. Geochemistry, Geophysics, Geosystems 12, QOAA18, doi: 10.1029/2010GC663478.Google Scholar
North American Commission on Stratigraphic Nomenclature. 1983. North American Stratigraphic Code. American Association of Petroleum Geologists Bulletin 67, 841–75.Google Scholar
Peng, S., Babcock, L. E. & Cooper, R. A. 2012. The Cambrian Period. In The Geologic Time Scale. Volume 2 (eds Gradstein, F. M., Ogg, J. G., Schmitz, M. D. & Ogg, G. M.), pp. 437–88. Amsterdam: Elsevier.Google Scholar
Perkins, C. & Walshe, J. L. 1993. Chronology of the Mount Read Volcanics, Tasmania, Australia. Economic Geology 88, 1176–97.Google Scholar
Pigage, L. C., Crowley, J. L., Pyle, L. J., Abbott, J. G., Roots, C. F. & Schmitz, M. D. 2012. U-Pb zircon age of an Ordovician tuff in southeast Yukon: implications for the age of the Cambrian–Ordovician boundary. Canadian Journal of Earth Science 49, 732–41.Google Scholar
Reed, F. R. C. 1910. The Cambrian fossils of Spiti. Memoirs of the Geological Society of India 1, 76 pp.Google Scholar
Růžička, R. 1946. O někerých význačných trilobitech skryjského kambria. Véstnik Královské české společnosti nauk, Třida mathematicko-přírodovědecká 1944 (12), 126 (published in 1946).Google Scholar
Sadler, P. M., Cooper, R. A. & Melchin, M. 2009. High-resolution Early Paleozoic (Ordovician–Silurian) time scales. Geological Society of America Bulletin 121, 887906.Google Scholar
Salvador, A. 1994. International Stratigraphic Guide. A Guide to Stratigraphic Classification, Terminology, and Procedure. Second Edition. International Union of Geologists and the Geological Society of America, 214 pp.Google Scholar
Schmitz, M. D. 2012. Radiometric ages used in GTS2012. In The Geologic Time Scale. Volume 2 (eds Gradstein, F. M., Ogg, J. G., Schmitz, M. D. & Ogg, G. M.), pp. 1045–82. Amsterdam: Elsevier.Google Scholar
Sdzuy, K. 1964. Das Kambrium des Frankenwaldes. 1. Erforschungsgeschichte, Vorkommen und Stratigraphie. Senckenbergiana Lethaea 45, 201–21.Google Scholar
Sdzuy, K. 1966. Das Kambrium des Frankenwaldes. 2: Die Bergleshof-Schichten und ihre Trilobiten-Fauna. Senckenbergiana Lethaea 47, 201–21.Google Scholar
Sdzuy, K. 2000. Das Kambrium des Frankenwaldes. 3. Die Lippertsgrüner Schichten und ihre Fauna. Senckenbergiana Lethaea 79, 301–27.Google Scholar
Shergold, J. H. 1995. Time Scale 1. Cambrian. Australian Geological Survey Organization, Record 1995, 30 pp.Google Scholar
Sheridan, M. F. 1979. Emplacement of pyroclastic flows: a review. In Ash-Flow Tuffs (eds Chapin, C. E. & Elston, W. G.), pp. 125–36. Geological Society of America, Special Paper 180.Google Scholar
Stettner, G. 1972. Zur geotektonischen Entwicklung im Westteil der Böhmischen Masse bei Berücksichtigung des Deformationsstils im orogenen Bewegungssystem. Zeitschrift der deutschen geologischen Gesellschaft 123, 291326.Google Scholar
Theokritoff, G. 1979. Early Cambrian biogeography in the North Atlantic region. Lethaia 18, 283–93.Google Scholar
Thoral, M. 1947. Trois noveaux genres de trilobites acadiens du Languedoc et de l'Espagne. Compte Rendu de l'Académie des Sciences du France 244, 5960.Google Scholar
Wurm, A. 1924 a. Über ein Vorkommen von Mittelkambrium (Paradoxidesstufe) aus dem Frankenwald. Geognostische Jahreshefte 37, 67–8.Google Scholar
Wurm, A. 1924 b. Über ein Vorkommen von Mittelcambrium (Paradoxides-Schichten) im bayerischen Frankenwald. Zeitschrift der deutschen geologischen Gesellschaft 75, Monatsberichte für 1923, 135–6.Google Scholar
Wurm, A. 1925 a. Geologie von Bayern. Teil 1: Nordbayern, Fichtelgebirge und Frankenwald. In Handbuch der Geologie und Bodenschätze Deutschlands. II. Abt.: Regionale Geologie Deutschlands, 373 pp. Berlin: Borntraeger,Google Scholar
Wurm, A. 1925 b. Über ein Vorkommen von Mittelcambrium (Paradoxidesschichten) im bayrischen Frankenwald bei Wildenstein südlich Presseck. Neues Jahrbuch für Mineralogie, Geologie und Paläontologie. Beilagen-Band, Abteilung B 52, 7193.Google Scholar
Wurm, A. 1928. Über eine neue mittelkambrische Fauna aus dem bayerischen Frankenwald und ihre Bedeutung für die Stratigraphie des ältesten Paläozoicums (Conocoryphe-Schichten von Lippertsgrün). Neues Jahrbuch für Mineralogie, Geologie und Paläontologie. Beilagren-Band, Abteilung B 59, 3147.Google Scholar