Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T02:52:30.390Z Has data issue: false hasContentIssue false

Geochemistry and tectonic significance of augen gneisses from the southern Menderes Massif (West Turkey)

Published online by Cambridge University Press:  01 May 2009

E. Bozkurt
Affiliation:
Ankara University, Science Faculty, Geological Engineering Department, 06100 Tandoğan-Ankara, Turkey
J. A. Winchester
Affiliation:
Geology Department, Keele University, Staffordshire ST5 5BG, UK
R. G. Park
Affiliation:
Geology Department, Keele University, Staffordshire ST5 5BG, UK

Abstract

The protoliths of mylonitized augen gneisses exposed in the southern sector of the Menderes Massif (West Turkey) are calc-alkaline, peraluminous, S-type, late- to post-tectonic tourmaline- and garnet-bearing, two-mica leucogranites. They cut and post-date the fabrics of the ‘main Menderes metamorphism’ which took place between the early Eocene and early Oligocene and intrude metamorphic basement rocks comprising the so-called ‘Palaeozoic schist envelope’ of the massif. They are themselves cut by an extensive network of tourmaline-rich dykes. Chemical, mineralogical, isotopic and field relations suggest that the granitic protolith crystallized from a boron-rich, water-saturated melt, derived from partial melting of metagreywacke in the lower crust during peak Barrovian-type metamorphism. The protolith was probably emplaced during lateorogenic extensional collapse of the thickened crust in west Turkey during late Oligocene time.

Type
Articles
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altherr, R., Kreuzer, H., Wendt, I., Enz, H., Wagner, A., Keller, J., Harre, W., & Hohndorf, A., 1982. A late Oligocene/early Miocene high temperature belt in the Attic—Cycladic Crystalline Complex (SE Pelagonian, Greece). Geologisches Jahrbuch 23E, 97164.Google Scholar
Andriessen, P. A. M., Boelru, N. A. I. M., Herbed, E. H., Priem, H. N. A., Verdurmen, E. A. T. H., & Verschure, R. H., 1979. Dating the events of metamorphism and granitic magmatism in the Alpine orogen at Naxos (Cyclades, Greece). Contributions to Mineralogy and Petrology 69, 215–25.CrossRefGoogle Scholar
Ashworth, J. R., & Evirgen, M. M., 1984. Garnet and associated minerals in the southern margin of the Menderes Massif, southwestern Turkey. Geological Magazine 121, 323–37.CrossRefGoogle Scholar
Ataman, G., & Bingöl, E., 1978. Bati Anadolu plutonik, volkanik ve metamorfiklerin kimysal bileşimi üzerine araştirmalar. Yerbilimeri 4, 2842.Google Scholar
Barker, F., 1979. Trondhjemites: definition, environment and hypothesis of origin. In Trondhjemites, Dacites and Related Rocks (ed. Barker, F.), pp. 112. Amsterdam: Elsevier.Google Scholar
Başarir, E., 1970. Bafa gölü dağusunda kalan Menderes Masifi güney kanadimn Jeolojisi ve petrografisi. Ege University, Faculty of Science Publication no. 102.Google Scholar
Becker-Platen, D., Benda, L., & Steffens, F., 1977. Litho-und biostratigraphische deutung radiometrischer Altersbestimmungen aus dem Jungtertiar der Turkei. Geologisches Jahrbuch 25B, 139–67.Google Scholar
Bingöl, E., 1989. 1/2000000 Scale Geological Map of Turkey. Mineral Research and Exploration Institute of Turkey Press.Google Scholar
Bingöl, E., Delaloye, M., & Ataman, G., 1982. Granitic intrusions in western Anatolia: a contribution to the geodynamic study of this area. Eclogae Geologische Helvetica 75, 437–46.Google Scholar
Bozkurt, E., & Park, R. G., 1993. Menderes massif: A Cordilleran type metamorphic core complex in western Turkey. Terra Abstracts 5, 255.Google Scholar
Bozkurt, E., & Park, R. G., 1994. Southern Menderes Massif: an incipient metamorphic core complex in western Anatolia, Turkey. Journal of the Geological Society, London 151, 213–16.CrossRefGoogle Scholar
Bozkurt, E., Park, R. G., & Winchester, J. A., 1992. Evidence against the core/core cover concept in the southern sector of the Menderes Massif. Abstracts of Turkish Geology Workshop (Work in Progress on the Geology of Türkiye), 9–10 April, Keele, 22.Google Scholar
Bozkurt, E., Park, R. G., & Winchester, J. A., 1993. Evidence against the core/cover interpretation of the southern sector of the Menderes Massif, west Turkey. Terra Nova 5, 445–51.CrossRefGoogle Scholar
Buick, I. S., 1991. The late Alpine evolution of an extensional shear zone, Naxos, Greece. Journal of the Geological Society, London 148, 93103.CrossRefGoogle Scholar
Çağlayan, M. A., Öztürk, E. M., Öztürk, S., Sav, H., & Akat, U., 1980. Menderes Masifi güneyine ait bulgular ve yapisal yorum. Geological Engineering 10, 919.Google Scholar
Cann, J. R., 1970. Rb, Sr, Y, Zr and Nb in some ocean floor basaltic rocks. Earth and Planetary Science Letters 10, 711.CrossRefGoogle Scholar
Chappell, B. W., & White, A. J. R., 1974. Two contrasting granite types. Pacific Geology 8, 137–4.Google Scholar
Chorlton, L. B., & Martin, R. F., 1978. The effect of boron on the granite solidus. Canadian Mineralogist 16, 239–44.Google Scholar
Cox, K. G., Bell, J. D., & Pankhurst, R. J., 1979. The Interpretation of Igneous Rocks. London: Allen and Unwin, 450 pp.CrossRefGoogle Scholar
De Graciansky, P. C., 1965. Menderes Masifi güney kiyisi boyunca görülen metamorfizma hakkinda açiklamalar. Bulletin of Mineral Research and Exploration Institute of Turkey 64, 88121.Google Scholar
Del Moro, A., Innocenti, F., Kyriakopoulos, C., Manetti, P., & Papadopoulos, P., 1988. Tertiary granitoids from Thrace (Northern Greece) Sr isotopic and petrochemical data. Neues Jahrbuch für Mineralogie, Geologie und Palaeontologie 159, 113–35.Google Scholar
Egger, A., 1974. Mineral Exploration in Two Areas. UNESCO Technical Report 4, UP/UN/TUR−72–004. New York.Google Scholar
England, P., & Houseman, G., 1989. Extension during continental convergence, with application to the Tibetan plateau. Journal of Geophysical Research 94, 17561–79.CrossRefGoogle Scholar
England, P., Le Fort, P., Molnar, P., & Pecher, A., 1992. Heat sources for Tertiary metamorphism and anatexis in the Annapurna—Manashi region, central Nepal. Journal of Geophysical Research 97 (B2), 2107–28.CrossRefGoogle Scholar
Erdoğan, B., 1992. Problem of core—mantle boundary of Menderes Massif. In Proceedings of the International Symposium on Eastern Mediterranean Geology (eds Anil, M. and Nazik, A.), pp. 314–15. Geosound 20.Google Scholar
Floyd, P. A., & Winchester, J. A., 1978. Identification and discrimination of altered and metamorphosed rocks using immobile elements. Chemical Geology 21, 291306.CrossRefGoogle Scholar
Floyd, P. A., & Winchester, J. A., 1983. Element mobility associated with metashear zones within the Ben Hope amphibolite suite, Scotland. Chemical Geology 39, 115.CrossRefGoogle Scholar
Fourcade, S., & Allegre, C. J., 1981. Trace element behaviour in granite genesis: a case study, the calcalkaline plutonic association from the Querigut Complex (Pyrenees, France). Contributions to Mineralogy and Petrology 76, 177–95.CrossRefGoogle Scholar
Green, T. H., 1978. A model for the formation and crystallization of corundum normative calc-alkaline magmas through amphibole fractionation: A discussion. Journal of Geology 86, 269–72.CrossRefGoogle Scholar
Harris, N. B. W., Pearc, J. A., & Tindle, A. G., 1986. Geochemical characteristics of collision-zone magmatism. In Collision Tectonics (eds Coward, M. P. and Ries, A. C.), pp. 6781. Geological Society, London, Special Publication no. 19.Google Scholar
Herrmann, A. G., Potts, M. J., & Knake, D., 1974. Geochemistry of rare earth elements in spilites from the oceanic and continental crust. Contributions to Mineralogy and Petrology 44, 116.CrossRefGoogle Scholar
Hutton, D. H. W., Dempster, T. J., Brown, P. E., & Becker, S. D., 1990. A new mechanism of granite emplacement: intrusion in active extensional shear zones. Nature 343, 452–5.CrossRefGoogle Scholar
Jones, C. E., Tarney, J., & Baker, J., 1991. Emplacement mechanisms and petrogenesis of Tertiary Granitoids, Rhodope Massif, N. Greece. Terra Abstracts 3, 40.Google Scholar
Kay, R., Hubbard, N. J., & Gast, P. W., 1970. Chemical characteristics and origin of ocean ridge volcanic rocks. Journal of Geophysical Research 75, 1585–614.CrossRefGoogle Scholar
Kogarko, L. N., 1974. Role of volatiles. In The Alkaline Rocks (ed. Sorensen, H.), pp. 474–87. Wiley and Sons.Google Scholar
Kolocotroni, C. N., & Dixon, J. E., 1991. The emplacement and generation of I-type granites during extension. The Oligocene Vrondou Pluton, NE Greece. Terra Abstracts 3, 40–1.Google Scholar
Konak, N., 1985. A discussion on the core—cover relationships on the basis of recent observations (Menderes Massif). Abstracts of the Geological Congress of Turkey – 1985, 33.Google Scholar
Konak, N., Akdeniz, N., & Öztürk, E. M., 1987. Geology of the south of Menderes Massif. Correlation of Variscan and Pre-Variscan Events of the Alpine Mediterranean Mountain Belt (Guide book for the field excursion along western Anatolia, Turkey). IFCP Project No. 5, 4253.Google Scholar
Maniar, P. D., & Piccoli, P. M., 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin 101, 635–43.2.3.CO;2>CrossRefGoogle Scholar
Miller, C. F., & Stoddard, E. F., 1981. The role of manganese in the paragenesis of magmatic garnet: an example from the Old Woman—Piute range, California. Journal of Geology 89, 233–46.CrossRefGoogle Scholar
Miyashiro, A., 1978. Nature of alkalic volcanic rock series. Contributions to Mineralogy and Petrology 66, 91104.CrossRefGoogle Scholar
Nicolas, A., Bouchez, J. L., Blasise, J., & Poirier, J. B., 1977. Geological aspects of deformation in continental shear zones. Tectonophysics 42, 5573.CrossRefGoogle Scholar
Okay, A. I., 1980. Mineralogy, petrology and phase relations of glaucophane-lawsonite zone bluschists from the Tavşanh region, northwest Turkey. Contributions to Mineralogy and Petrology 72, 243–55.CrossRefGoogle Scholar
Önay, T. Ş., 1949. Über die Schmirgeisteine SW-Anatolies. Schweiierische Mineralogische und Petrographische Mitteilungen XXIV, 357492.Google Scholar
Öztürk, A., & Koçyiğit, A., 1983. Menderes grubu kayalannin temel-örtü ilişkisine yapisal bir yaklaşim (Selimiye-Muğla). Bulletin of the Geological Society of Turkey 26, 99106.Google Scholar
Pearce, J. A., Harris, N. B. W., & Tindle, A. G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology 25, 956–83.CrossRefGoogle Scholar
Pichavant, M., 1981. An experimental study of the effect of boron on a water saturated haplogranite at 1 kbar vapour pressure. Contributions to Mineralogy and Petrology 76, 430–9.CrossRefGoogle Scholar
Pitcher, W. S., 1979. The nature, ascent and emplacement of granitic magmas. Journal of the Geological Society, London 136, 627–62.CrossRefGoogle Scholar
Ramberg, H., 1970. Model studies in relation to intrusion of plutonic bodies. In Mechanism of Igneous Intrusion (eds Newall, G. and Tas, N.), pp. 261–86. Geological Journal 2.Google Scholar
Reischmann, T., Kröner, A., Todt, W., Dürr, S., & Şengör, A. C. M., 1991. Episodes of crustal growth in the Menderes Massif, W Turkey, inferred from zircon dating. Terra Abstracts 3, 34.Google Scholar
Satir, M., & Friedrichsen, H., 1986. The origin and evolution of the Menderes massif, W-Turkey: a rubidium/strontium and oxygen isotope study. Geologische Rundschau 75, 703–14.CrossRefGoogle Scholar
Schliestedt, M., Altherr, R., & Matthews, A., 1987. Evolution of the Cycladic Crystalline Complex: petrology, isotope, geochemistry and geochronology. In Chemical Transport in Metasomatism (eds Helgeson, H. C. and Schilling, R. D.), pp. 7694. D. Reidel.Google Scholar
Schilling, R. D., 1962. On petrology, age, and structure of the Menderes migmatite complex (SW-Turkey). Bulletin of Mineral Research and Exploration Institute of Turkey 58, 7184.Google Scholar
Şengör, A. M. C., & Yilmaz, Y., 1981. Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics 75, 181241.CrossRefGoogle Scholar
Şengör, A. M. C., Satir, M., & Akkök, R., 1984. Timing of tectonic events in the Menderes Massif, western Turkey: implications for tectonic evolution and evidence for Pan-African basement in Turkey. Tectonics 3, 693707.CrossRefGoogle Scholar
Seyitoğlu, G., Scott, B., & Rundle, C. C., 1992. Timing of Cenozoic extensional tectonics in west Turkey. Journal of the Geological Society, London 149, 533–8.CrossRefGoogle Scholar
Simpson, C., & Wintsch, R. P., 1989. Evidence for deformation induced K-feldspar replacement by myrmekite. Journal of Me tamorphic Geology 1, 261–75.CrossRefGoogle Scholar
Smith, R. E., & Smith, S. E., 1976. Comments on the use of Ti, Zr, Y, Sr, K, P and Nb in classification of basaltic magmas. Earth and Planetary Science Letters 32, 114–20.CrossRefGoogle Scholar
Strong, D. F., & Hanmer, S. K., 1981. The leucogranites of southern Brittany: origin by faulting, frictional heating, fluid flux and frictional melting. Canadian Mineralogist 19, 163–76.Google Scholar
Taylor, S. R., & McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Oxford: Blackwell Scientific Publications, 312 pp.Google Scholar
Tindle, A. G., & Pearce, J. A., 1983. Assimilation and partial melting of continental crust: evidence from the mineralogy and geochemistry of autoliths and xenoliths. Lithos 16, 185202.CrossRefGoogle Scholar
Verge, N. J., 1993. The exhumation of the Menderes Massif metamorphic core complex of Western Anatolia. Terra Abstracts 5, 249.Google Scholar
White, A. J. R., & Chappell, B. W., 1977. Ultrametamorphism and granitoid genesis. Tectonophysics 43, 722.CrossRefGoogle Scholar
Wijbrans, J. R., van Wees, J. D., Stephenson, R. A., & Cloetingh, S. A. P. L., 1993. Pressure—temperature—time evolution of the high-pressure metamorphic complex of Sifnos, Greece. Geology 21, 443–6.2.3.CO;2>CrossRefGoogle Scholar
Winchester, J. A., & Floyd, P. A., 1976. Geochemical magma type discrimination and application to altered and metamorphosed basic igneous rocks. Earth and Planetary Science Letters 28, 459–63.CrossRefGoogle Scholar
Winchester, J. A., & Floyd, P. A., 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology 20, 325–43.CrossRefGoogle Scholar
Winchester, J. A., & Max, M. D., 1982. The geochemistry and origins of the Precambrian rocks of the Rosslare Complex, SE Ireland. Journal of the Geological Society, London 139, 309–19.CrossRefGoogle Scholar
Yilmaz, Y., 1989. An approach to the origin of young volcanic rocks of Western Turkey. In Tectonic Evolution of the Tethyan Region (ed. Şengör, A. M. C.), pp. 159–89. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
Zimmermann, J. L., Saupe, F., Özgen, S., & Anil, M., 1989. Oligocene—Miocene K—Ar ages of the quartz monzonite stocks from Nevruz-Çakiroba (Yenice, Çanakkale, Northwest Turkey). Terra Abstracts 1, 354.Google Scholar