Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-22T23:25:17.672Z Has data issue: false hasContentIssue false

Geochemical and Nd isotopic compositions of the Palaeoproterozoic metasedimentary rocks in the Kongling complex, nucleus of Yangtze craton, South China block: implications for provenance and tectonic evolution

Published online by Cambridge University Press:  07 March 2017

XIAO-FEI QIU*
Affiliation:
Laboratory of Isotope Geochemistry, Wuhan Center of China Geological Survey, Wuhan 430205, China Research Center for Petrogenesis and Mineralization of Granitoid Rocks, China Geological Survey, Wuhan 430205, China
XIAO-MING ZHAO
Affiliation:
Research Center for Petrogenesis and Mineralization of Granitoid Rocks, China Geological Survey, Wuhan 430205, China
HONG-MEI YANG
Affiliation:
Laboratory of Isotope Geochemistry, Wuhan Center of China Geological Survey, Wuhan 430205, China Research Center for Petrogenesis and Mineralization of Granitoid Rocks, China Geological Survey, Wuhan 430205, China
SHAN-SONG LU
Affiliation:
Laboratory of Isotope Geochemistry, Wuhan Center of China Geological Survey, Wuhan 430205, China Research Center for Petrogenesis and Mineralization of Granitoid Rocks, China Geological Survey, Wuhan 430205, China
NIAN-WEN WU
Affiliation:
Research Center for Petrogenesis and Mineralization of Granitoid Rocks, China Geological Survey, Wuhan 430205, China
TUO JIANG
Affiliation:
Laboratory of Isotope Geochemistry, Wuhan Center of China Geological Survey, Wuhan 430205, China Research Center for Petrogenesis and Mineralization of Granitoid Rocks, China Geological Survey, Wuhan 430205, China
TAO GU
Affiliation:
Research Center for Petrogenesis and Mineralization of Granitoid Rocks, China Geological Survey, Wuhan 430205, China
YUN-FENG WANG
Affiliation:
Laboratory of Isotope Geochemistry, Wuhan Center of China Geological Survey, Wuhan 430205, China China Academy of Geological Sciences, Beijing 100037, China
*
Author for correspondence: [email protected]

Abstract

Palaeoproterozic metasedimentary rocks, also referred to as khondalites, characterized by Al-rich minerals, are extensively exposed in the nucleus of the Yangtze craton, South China block. Samples of garnet–sillimanite gneiss in the khondalite suite were collected from the Kongling complex for Nd isotopic and elemental geochemical study. These rocks are characterized by variable SiO2 contents ranging from 35.71 to 58.07 wt%, and have low CaO (0.45–0.84 wt%) but high Al2O3 (18.56–29.04 wt%), Cr (174–334 ppm) and Ni (42.5–153 ppm) contents. They have high CIW (Chemical Index of Weathering) values (90.4–94.7), indicating intense chemical weathering of the source material. The samples display light rare earth elements (LREE) enrichment with negative Eu anomalies (Eu/Eu*=0.40–0.68), and have flat heavy rare earth elements (HREE) patterns. The high contents of transition elements (e.g. Cr, Ni, Sc, V) and moderately radiogenic Nd isotopic compositions suggest that the paragneisses might be those of first-cycle erosion products of predominantly mafic rocks mixing with small amounts of felsic moderately evolved Archaean crustal source. Geochemical and Nd isotopic compositions reveal that at least some of the protoliths of Kongling khondalite were sourced from local pre-existing mafic igneous rocks in a continental arc tectonic setting. Combined with documented zircon U–Pb geochronological data, we propose that the Palaeoproterozoic high-pressure granulite-facies metamorphism, rapid weathering, erosion and deposition of the khondalites in the interior of the Yangtze craton might be related to a Palaeoproterozoic collisional orogenic event during 2.1–1.9 Ga, consistent with the worldwide contemporary orogeny, implying that the Yangtze craton may have been an important component of the Palaeoprotorozoic Columbia supercontinent.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bai, X., Ling, W. L., Duan, R. C., Qiu, X. F., Liu, C. X., Kuang, H., Gao, Y. J., Zhou, L., Chen, Z. W. & Lu, S. S. 2011. Mesoproterozoic to Paleozoic Nd isotope stratigraphy of the South China continental nucleus and its geological significance. Science China Earth Sciences 54, 1665–74.Google Scholar
Barbey, P., Capdevila, R. & Hameurt, J. 1982. Major and trace element abundances in the khondalite suite of the granulite belt of Lapland (Fennoscandia): evidence for an Early Proterozoic flysch belt. Precambrian Research 16, 273–90.Google Scholar
Bhatia, M. R. 1983. Plate tectonics and geochemical composition of sandstones. The Journal of Geology 91, 611–27.Google Scholar
Bhatia, M. R. 1985. Rare earth element geochemistry of Australian Paleozoic graywackes and mudrocks: provenance and tectonic control. Sedimentary Geology 45, 97113.Google Scholar
Bhatia, M. R. & Crook, K. A. 1986. Trace element characteristics of greywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology 92, 181–93.Google Scholar
Bolhar, R., Weaver, S. D., Whitehouse, M. J., Palin, J. M., Woodhead, J. D. & Cole, J. W. 2008. Sources and evolution of arc magmas inferred from coupled O and Hf isotope systematics of plutonic zircons from the Cretaceous Separation Point Suite (New Zealand). Earth and Planetary Science Letters 268, 312–24.Google Scholar
Bouilhol, P., Schaltegger, U., Chiaradia, M., Ovtcharova, M., Stracke, A., Burg, J. P. & Dawood, H. 2011. Timing of juvenile arc crust formation and evolution in the Sapat Complex (Kohistan-Pakistan). Chemical Geology 280, 243–56.Google Scholar
Cawood, P. A. & Tyler, I. M. 2004. Assembling and reactivating the Proterozoic Capricorn Orogen: lithotectonic elements, orogenies, and significance. Precambrian Research 128, 201–18.Google Scholar
Cawood, P. A., Wang, Y., Xu, Y. & Zhao, G. 2013. Locating South China in Rodinia and Gondwana: a fragment of greater India lithosphere? Geology 41, 903–6.Google Scholar
Chen, K., Gao, S., Wu, Y. B., Guo, J. L., Hu, Z. C., Liu, Y. S., Zong, K. Q., Liang, Z. W. & Geng, X. L. 2013. 2.6–2.7 Ga crustal growth in Yangtze craton, South China. Precambrian Research 224, 472–90.Google Scholar
Condie, K. C., Boryta, M. D., Liu, J. & Qian, X. 1992. The origin of khondalite: geochemical evidence from the Archean to early Proterozoic granulite belt in the North China Craton. Precambrian Research 59, 207–23.Google Scholar
Crichton, J. G. & Condie, K. C. 1993. Trace elements as source indicators in cratonic sediments: a case study from the Early Proterozoic Libby Creek Group, Southeastern Wyoming. Journal of Geology 101, 319–32.Google Scholar
Cullers, R. L. 1995. The controls on the major- and trace-element evolution of shales, siltstones and sandstones of Ordovician to Tertiary age in the Wet Mountains region, Colorado, USA. Chemical Geology 123, 107–31.Google Scholar
Cullers, R. L., Basu, A. & Suttner, L. J. 1988. Geochemical signature of provenance in sand-size material in soils and stream sediments near the Tobacco Root Batholith, Montana, USA. Chemical Geology 70, 335–48.Google Scholar
Daly, J. S., Balagansky, V. V., Timmerman, M. J., Whitehouse, M. J., Jong, K. D., Guise, P., Bogdanova, S., Gorbatschev, R. & Bridgwater, D. 2001. Ion microprobe U/Pb zircon geochronology and isotopic evidence for a trans-crustal suture in the Lapland-Kola Orogen, northern Fennoscandian Shield. Precambrian Research 105, 289314.Google Scholar
Dan, W., Li, X. H., Guo, J., Liu, Y. & Wang, X. C. 2012. Integrated in situ zircon U-Pb age and Hf-O isotopes for the Helanshan khondalites in North China Craton: juvenile crustal materials deposited in active or passive continental margin? Precambrian Research 222–223, 143–58.Google Scholar
Depaolo, D. J., Linn, A. M. & Schubert, G. 1991. The continental crustal age distribution: methods of determining mantle separation ages from Sm-Nd isotopic data and application to the Southwestern United States. Journal of Geophysical Research 96, 2071–88.Google Scholar
Dostal, J. 1975. The origin of garnet-cordierite-sillimanite bearing rocks from Chandos Township, Ontario. Contributions to Mineralogy and Petrology 49, 163–75.Google Scholar
Fralick, P. W. & Kronberg, B. I. 1997. Geochemical discrimination of clastic sedimentary rock sources. Sedimentary Geology 113, 111–24.Google Scholar
Gao, S., Ling, W. L., Qiu, Y. M., Zhou, L., Hartmann, G. & Simon, K. 1999. Contrasting geochemical and Sm-Nd isotopic compositions of Archean metasediments from the Kongling high-grade terrain of the Yangtze craton: evidence for cratonic evolution and redistribution of REE during crustal anatexis. Geochimica et Cosmochimica Acta 63, 2071–88.Google Scholar
Gao, S., Yang, J., Zhou, L., Li, M., Hu, Z. C., Guo, J. L., Yuan, H. L., Gong, H. J., Xiao, G. Q. & Wei, J. Q. 2011. Age and growth of the Archean Kongling terrain, South China, with emphasis on 3.3 Ga granitoid gneisses. American Journal of Science 311, 153–82.Google Scholar
Ge, R. F., Zhu, W. B., Wu, H. L., He, J. W. & Zheng, B. H. 2013. Zircon U–Pb ages and Lu–Hf isotopes of Paleoproterozoic metasedimentary rocks in the Korla Complex, NW China: implications for metamorphic zircon formation and geological evolution of the Tarim Craton. Precambrian Research 231, 118.Google Scholar
Ghosh, S. & Sarkar, S. 2010. Geochemistry of Permo-Triassic mudstone of the Satpura Gondwana basin, central India: clues for provenance. Chemical Geology 277, 78100.Google Scholar
Guo, J. L., Gao, S., Wu, Y. B., Li, M., Chen, K., Hu, Z. C., Liang, Z. W., Liu, Y. S., Zhou, L. & Zong, K. Q. 2014. 3.45 Ga granitic gneisses from the Yangtze Craton, South China: implications for Early Archean crustal growth. Precambrian Research 242, 8295.Google Scholar
Guo, J. L., Wu, Y. B., Gao, S., Jin, Z. M., Zong, K. Q., Hu, Z. C., Chen, K., Chen, H. H. & Liu, Y. S. 2015. Episodic Paleoarchean-Paleoproterozoic (3.3–2.0 Ga) granitoid magmatism in Yangtze Craton, South China: implications for late Archean tectonics. Precambrian Research 270, 246–66.Google Scholar
Hacker, B. R., Ratschbacher, L., Webb, L., Ireland, T., Walker, D. & Dong, S. 1998. U/Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinling–Dabie Orogen, China. Earth and Planetary Science Letters 161, 215–30.Google Scholar
Harnois, L. 1988. The CIW index: a new chemical index of weathering. Sedimentary Geology 55, 319–22.Google Scholar
Hoffman, P. F. 1988. United plates of America, the birth of a craton: early Proterozoic assembly and growth of Laurentia. Annual Review of Earth and Planetary Sciences 16, 543603.Google Scholar
Holland, H. D. & Turekian, K. K. 2014. Treatise on Geochemistry, 10 vols. Amsterdam: Elsevier, 9144 pp.Google Scholar
Jiang, J. S. 1986. Isotopic geochronology and crustal evolution of Huangling metamorphic terrain. Journal of Jilin University (Earth Science Edition) 3, 313 (in Chinese with English summary).Google Scholar
Jiang, J. S. 1993. Geochemistry of Mashan-Group khondalite series. Geochimica 4, 363–72 (in Chinese with English summary).Google Scholar
Kröner, A., Jaeckel, P., Brandl, G., Nemchin, A. A. & Pidgeon, R. T. 1999. Single zircon ages for granitoid gneisses in the Central Zone of the Limpopo Belt, Southern Africa and geodynamic significance. Precambrian Research 93, 299337.Google Scholar
Li, Z., Chen, B., Wei, C. J., Wang, C. X. & Han, W. 2015. Provenance and tectonic setting of the Paleoproterozoic metasedimentary rocks from the Liaohe Group, Jiao-Liao-Ji Belt, North China Craton: insights from detrital zircon U–Pb geochronology, whole-rock Sm–Nd isotopes, and geochemistry. Journal of Asian Earth Sciences 111, 711–32.Google Scholar
Li, L. M., Lin, S. F., Xiao, W. J., Yin, C. Q., Davis, D. W. & Xing, G. F. 2014. Geochronology and geochemistry of igneous rocks from the Kongling terrane: implications for Mesoarchean to Paleoproterozoic crustal evolution of the Yangtze Block. Precambrian Research 255, 3047.Google Scholar
Li, J. H., Qian, X. L. & Liu, S. W. 2000. Geochemistry of khondalites from the central portion of North China craton (NCC): implications for the continental cratonization in the Neoarchean. Science China Earth Sciences 43, 253–65.Google Scholar
Li, Y. H., Zheng, J. P., Xiong, Q., Wang, W., Ping, X. Q., Li, X. Y. & Tang, H. Y. 2016. Petrogenesis and tectonic implications of Paleoproterozoic metapelitic rocks in the Archean Kongling Complex from the northern Yangtze Craton, South China. Precambrian Research 276, 158–77.Google Scholar
Ling, W. L., Gao, S., Zhang, B. R., Zhou, L. & Xu, Q. D. 2001. The recognizing of ca. 1.95 Ga tectono-thermal event in Kongling nucleus and its significance for the evolution of Yangtze Block, South China. Chinese Science Bulletin 46, 326–9.Google Scholar
Ling, W. L., Gao, S., Zheng, H. F., Zhou, L. & Zhao, Z. B. 1998. An Sm-Nd isotopic dating study of the Archean Kongling Complex in the Huangling area of the Yangtze Craton. Chinese Science Bulletin 14, 1187–91.Google Scholar
Liu, Y. S., Gao, S., Hu, Z. C., Gao, C. G., Zong, K. Q. & Wang, D. B. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology 51, 537–71.Google Scholar
Ma, G. G., Li, H. & Zhang, Z. 1984. An investigation of the age limits of the Sinian System in South China. Bulletin of the Yichang Institute of Geology and Mineral Resources, Chinese Academy of Geological Sciences 8, 129 (in Chinese with English summary).Google Scholar
McLennan, S. M. 1989. Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. Mineralogical Society of America, Reviews in Mineralogy 21, 169200.Google Scholar
Meyer, I., Davies, G. R. & Stuut, J. B. W. 2011. Grain size control on Sr-Nd isotope provenance studies and impact on paleoclimate reconstructions: an example from deep-sea sediments offshore NW Africa. Geochemistry, Geophysics, Geosystems 12, 120–30.Google Scholar
Nesbitt, H. W., Young, G. M. & Bosman, S. A. 2009. Major and trace element geochemistry and genesis of supracrustal rocks of the North Spirit Lake Greenstone belt, NW Ontario, Canada. Precambrian Research 174, 1634.Google Scholar
Payne, J. L., Barovich, K. M. & Hand, M. 2006. Provenance of metasedimentary rocks in the northern Gawler Craton, Australia: implications for Palaeoproterozoic reconstructions. Precambrian Research 148, 275–91.Google Scholar
Peng, S. B., Kusky, T. M., Jiang, X. F., Wang, L., Wang, J. P. & Deng, H. 2012. Geology, geochemistry, and geochronology of the Miaowan ophiolite, Yangtze craton: implications for South China's amalgamation history with the Rodinian supercontinent. Gondwana Research 21, 577–94.Google Scholar
Peng, M., Wu, Y. B., Wang, J., Jiao, W. F., Liu, X. C. & Yang, S. H. 2009. Paleoproterozoic mafic dyke from Kongling terrain in the Yangtze Craton and its implication. Chinese Science Bulletin 54, 10981104.Google Scholar
Qiu, Y. M., Gao, S., Mcnaughton, N. J., Groves, D. I. & Ling, W. 2000. First evidence of >3.2 Ga continental crust in the Yangtze craton of south China and its implications for Archean crustal evolution and Phanerozoic tectonics. Geology 28, 1114.3.2+Ga+continental+crust+in+the+Yangtze+craton+of+south+China+and+its+implications+for+Archean+crustal+evolution+and+Phanerozoic+tectonics.+Geology+28,+11–14.>Google Scholar
Qiu, X. F., Ling, W. L. & Liu, X. M. 2014. Correlation between the Mesoproterozoic Yangtze continental nucleus and the Shennongjia area: constraints from zircon geochronological and Hf isotope. Geological Science and Technology Information 33, 18 (in Chinese with English summary).Google Scholar
Qiu, X. F., Ling, W. L., Liu, X. M., Kusky, T., Berkana, W., Zhang, Y. H., Gao, Y. J., Lu, S. S., Kuang, H. & Liu, C. X. 2011. Recognition of Grenvillian volcanic suite in the Shennongjia region and its tectonic significance for the South China Craton. Precambrian Research 191, 101–19.Google Scholar
Qiu, X. F., Yang, H. M., Lu, S. S., Ling, W. L., Zhang, L. G., Tan, J. J. & Wang, Z. X. 2015 a. Geochronology and geochemistry of Grenville-aged (1063±16 Ma) metabasalts in the Shennongjia district, Yangtze block: implications for tectonic evolution of the South China Craton. International Geology Review 57, 7696.Google Scholar
Qiu, X. F., Yang, H. M., Lu, S. S., Tan, J. J. & Cai, Y. X. 2015 b. Geochronological and geochemical study for the Paleoproterozoic A-type granite in the nucleus of the Yangtze Craton and its tectonic implication. Geoscience 29, 884–95 (in Chinese with English summary).Google Scholar
Qiu, X. F., Yang, H. M., Lu, S. S., Zhang, L. G., Duan, R. C. & Du, G. M. 2016. Geochronology of the khondalite series in the Kongling complex, Yangtze craton and its geological implication. Geotectonica et Metallogenia 40, 549–58 (in Chinese with English summary).Google Scholar
Qiu, X. F., Yang, H. M., Zhang, L. G., Zhao, X. M., Duan, G. L., Lu, S. S., Tan, J. J. & Shi, N. 2015 c. Geochronology of serpentinized harzburgite in Miaowan Ophiolite, Yangtze Block and its tectonic implications. Earth Science – Journal of China University of Geosciences 40, 1121–8 (in Chinese with English summary).Google Scholar
Rogers, J. J. W. & Santosh, M. 2002. Configuration of Columbia, a Mesoproterozoic Supercontinent. Gondwana Research 5, 522.Google Scholar
Roy, D. K. & Roser, B. P. 2013. Climatic control on the composition of Carboniferous–Permian Gondwana sediments, Khalaspir basin, Bangladesh. Gondwana Research 23, 1163–71.Google Scholar
Santosh, M., Morimoto, T. & Tsutsumi, Y. 2006. Geochronology of the khondalite belt of Trivandrum Block, Southern India: electron probe ages and implications for Gondwana tectonics. Gondwana Research 9, 261–78.Google Scholar
Santosh, M., Tsunogae, T., Li, J. H. & Liu, S. J. 2007. Discovery of sapphirine-bearing Mg-Al granulites in the North China Craton: implications for Paleoproterozoic ultrahigh temperature metamorphism. Gondwana Research 11, 263–85.Google Scholar
Shackleton, R. M. 1976. Shallow and deep-level exposures of the Archean crust in India and Africa. In The Early History of the Earth (ed. Windley, B. F.), pp. 317–21. London: Wiley.Google Scholar
Sun, S. S. & McDonough, W. F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In Magmatism in Ocean Basins (eds Saunders, A. D. & Norry, M. J.), pp. 313–45. Geological Society of London, Special Publicationno. 42.Google Scholar
Taylor, S. R. & McLennan, S. M. 1985. The Continental Crust: Its Composition and Evolution. Oxford: Blackwell, 312 pp.Google Scholar
Wan, Y. S., Song, B., Liu, D. Y., Wilde, S. A., Wu, J. S., Shi, Y. R., Yin, X. Y. & Zhou, H. Y. 2006. SHRIMP U-Pb zircon geochronology of Palaeoproterozoic metasedimentary rocks in the North China Craton: evidence for a major Late Palaeoproterozoic tectonothermal event. Precambrian Research 149, 249–71.Google Scholar
Weaver, B. L. & Tarney, J. 1981. Lewisian gneiss geochemistry and Archaean crustal development models. Earth and Planetary Science Letters 55, 171–80.Google Scholar
Wei, J. Q. & Jing, M. M. 2013. Chronology and geochemistry of amphibolites from the Kongling complex. Chinese Journal of Geology 48, 970–83 (in Chinese with English summary).Google Scholar
Wronkiewicz, D. J. & Condie, K. C. 1987. Geochemistry of Archean shales from the Witwatersrand Supergroup, South Africa: source-area weathering and provenance. Geochimica et Cosmochimica Acta 51, 2401–16.Google Scholar
Wu, Y. B., Gao, S., Gong, H. J., Xiang, H., Jiao, W. F., Yang, S. H., Liu, Y. S. & Yuan, H. L. 2009. Zircon U–Pb age, trace element and Hf isotope composition of Kongling terrane in the Yangtze Craton: refining the timing of Paleoproterozoic high-grade metamorphism. Journal of Metamorphic Geology 27, 461–77.Google Scholar
Wu, Y. B. & Zheng, Y. F. 2004. Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Science Bulletin 49, 1554–69.Google Scholar
Wu, F. Y., Zhang, Y. B., Yang, J. H., Xie, L. W. & Yang, Y. H. 2008. Zircon U-Pb and Hf isotopic constraints on the Early Archean crustal evolution in Anshan of the North China Craton. Precambrian Research 167, 339–62.Google Scholar
Xie, S. W., Wu, Y. B., Gao, S., Liu, X. C., Zhou, L., Zhao, L. S. & Hu, Z. C. 2012. Sr-Nd isotopic and geochemical constraints on provenance of late Paleozoic to early Cretaceous sedimentary rocks in the Western Hills of Beijing, North China: implications for the uplift of the northern North China Craton. Sedimentary Geology 245, 1728.Google Scholar
Xiong, Q., Zheng, J. P., Yu, C. M., Su, Y. P., Tang, H. Y. & Zhang, Z. H. 2009. Zircon U-Pb age and Hf isotope of Quanyishang A-type granite in Yichang: signification for the Yangtze continental cratonization in Paleoproterozoic. Chinese Science Bulletin 3, 436–46.Google Scholar
Yan, R., Zhou, H. W., Zeng, W., Jiang, L. S., Zhou, Z. Y. & Chen, T. L. 2006. Geochemical characteristics of khondalite series within Kongling Group in Yichang City, Hubei Province. Geological Science and Technology Information 25, 41–6 (in Chinese with English summary).Google Scholar
Yin, C. Q., Lin, S. F., Davis, D. W., Zhao, G. C., Xiao, W. J., Li, L. M. & He, Y. H. 2013. 2.1–1.85 Ga tectonic events in the Yangtze Block, South China: petrological and geochronological evidence from the Kongling Complex and implications for the reconstruction of supercontinent Columbia. Lithos 182–183, 200–10.Google Scholar
Zhang, L., Wang, Q. Y., Chen, N. S., Sun, M., Santosh, M. & Ba, J. 2014. Geochemistry and detrital zircon U-Pb and Hf isotopes of the paragneiss suite from the Quanji massif, SE Tarim Craton: implications for Paleoproterozoic tectonics in NW China. Journal of Asian Earth Sciences 95, 3350.Google Scholar
Zhang, S. B., Zheng, Y. F., Wu, Y. B., Zhao, Z. F., Gao, S. & Wu, F. Y. 2006 a. Zircon isotope evidence for ≥3.5 Ga continental crust in the Yangtze craton of China. Precambrian Research 146, 1634.Google Scholar
Zhang, S. B., Zheng, Y. F., Wu, Y. B., Zhao, Z. F., Gao, S. & Wu, F. Y. 2006 b. Zircon U-Pb age and Hf-O isotope evidence for Paleoproterozoic metamorphic event in South China. Precambrian Research 151, 265–88.Google Scholar
Zhang, S. B., Zheng, Y. F., Zhao, Z. F., Wu, Y. B. & Yuan, H. L. 2008. Neoproterozoic anatexis of Archean lithosphere: geochemical evidence from felsic to mafic intrusions at Xiaofeng in the Yangtze Gorge, South China. Precambrian Research 163, 210–38.Google Scholar
Zhao, G. C., Cawood, P. A., Wilde, S. A. & Sun, M. 2002. Review of global 2.1–1.8 Ga orogens: implications for a pre-Rodinia supercontinent. Earth-Science Reviews 59, 125–62.Google Scholar
Zhao, G. C., Sun, M., Wilde, S. A. & Li, S. Z. 2004. A Paleo-Mesoproterozoic supercontinent: assembly, growth and breakup. Earth-Science Reviews 67, 91123.Google Scholar
Zhao, G. C., Sun, M., Wilde, S. A. & Li, S. Z. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited. Precambrian Research 136, 177202.Google Scholar
Zhao, J. H., Zhou, M. F. & Zheng, J. P. 2013. Neoproterozoic high-K granites produced by melting of newly formed mafic crust in the Huangling region, South China. Precambrian Research 233, 93107.Google Scholar
Zhou, J. B. & Wilde, S. A. 2013. The crustal accretion history and tectonic evolution of the NE China segment of the Central Asian Orogenic Belt. Gondwana Research 23, 1365–77.Google Scholar