Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-05T12:15:04.115Z Has data issue: false hasContentIssue false

Geochemical and isotope composition of pebbles from the Caban Conglomerate Formation and their bearing on the source of Welsh Palaeozoic sedimentary rocks

Published online by Cambridge University Press:  01 May 2009

J. A. Evans
Affiliation:
NERC Isotope Geosciences Laboratory, Keyworth, Nottingham NG12 5GG, U.K.

Abstract

Major, trace and REE geochemistry, together with Nd isotope determinations, provide new insights into the provenance of seven pebbles of igneous origin from an early Silurian facies of the Caban Conglomerate Formation from central Wales. The geochemical composition of the pebbles supports formation in a subduction related environment on an active continental margin. Biotite whole-rock Rb-Sr systematics constrain the age of a granite pebble to 650±38 Ma. The pebbles provide discrete examples of Avalonian basement which contributed to the isotope composition of sedimentary rocks in the Welsh Basin and one granite pebble provides a rare example from the Welsh Basin of an igneous rock with a Palaeoproterozoic depleted mantle model age.

Type
Articles
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beckinsale, R. D., Evans, J. A., Thorpe, R. S., Gibbons, W. & Harmon, R. S. Rb-Sr whole-rock isochron ages, δ18O values and geochemical data for the Sarn Igneous Complex and the Parwyd gneisses of the Mona Complex of Llŷn, N. Wales. Journal of the Geological Society 141, 701710.CrossRefGoogle Scholar
Beckinsale, R. D. & Thorpe, R. S. 1979. Rubidium-strontium whole-rock isochron evidence for the age of metamorphism and magmatism in the Mona Complex of Anglesey. Journal of the Geological Society 131, 433–9.CrossRefGoogle Scholar
British Geological Survey. In Press. 1: 50,000 geological sheet 179. Rhayader. Keyworth.Google Scholar
Davies, K. A. & Platt, J. I. 1933. The conglomerates and grits of the Bala and Valentian rocks of the District between Rhayader (Radnorshire) and Llansawel (Carmarthenshire). Quarterly Journal of the Geological Society 89, 202–18.CrossRefGoogle Scholar
Davies, G., Gledhill, A. & Hawkesworth, C. 1985. Upper crustal recycling in southern Britain: evidence from Nd and Sr isotopes. Earth and Planetary Science Letters 75, 112.CrossRefGoogle Scholar
Kelling, G. & Holroyd, J. 1978. Clast size, shape and composition in some ancient and modern fan gravels. In Sedimentation in Submarine Canyons. Fans and Trenches (eds Stanley, D. J. and Kelling, G.), pp. 138–59. Stroudsburg, Pennsylvania: Dowden, Hutchinson & Ross, Inc.Google Scholar
Kelling, G. & Woollands, M. A. 1969. The stratigraphy and sedimentation of Llandoverian rocks of the Rhayader district. In The Pre-Cambrian and Lower Palaeozoic rocks of Wales (ed. Wood, A.), pp. 255–82. Cardiff University Press.Google Scholar
Kokelaar, P. 1986. Petrology and geochemistry of the Rhobell Volcanic Complex: Amphibole dominated Fractionation at an early Ordovician Arc volcano in North Wales. Journal of Petrology 27, 887914.CrossRefGoogle Scholar
Lapworth, H. 1900. The Silurian sequence at Rhayader. Quarterly Journal of the Geological Society of London 56, 67137.CrossRefGoogle Scholar
Michard, A., Gurriet, P., Soudant, M. & Alberede, F. 1985. Nd isotopes in French Phanerozoic shales; external vs internal aspects of crustal evolution. Geochimica et Cosmochimica Acta 49, 601–10.CrossRefGoogle Scholar
Milodowski, A. E., & Zalasiewicz, J. A. 1991. The origin and sedimentary, diagenetic and metamorphic evolution of chlorite-mica stacks in the Llandovery sediments of central Wales, U.K. Geological Magazine 128, 263–78.CrossRefGoogle Scholar
Pearce, J. A. 1983. Role of sub-continental lithosphere in magma genesis at active continental margins. In Continental Basalts and Mantle Xenoliths (eds Hawkesworth, C. J. and Norry, M. J.), pp. 230249. Shiva Press.Google Scholar
Pharaoh, T. C., Webb, P. C., Thorpe, R. S. & Beckinsale, R. D. 1987. Geochemical evidence for the tectonic setting of late Proterozoic volcanic suites in central England. In Geochemistry and mineralisation of Proterozoic Volcanic Suites (eds Pharaoh, T. C. and Beckinsale, R. D.), pp. 541–52. no. 33.Google Scholar
Pharaoh, T. C., Merriman, R. J., Evans, J. A., Brewer, T. S., Webb, P. C. & Smith, N. J. P. 1991. Early Palaeozoic arc-related volcanism in the Concealed Caledonides of Southern Britain. Annales de la Societe Geologique de Belgique 114, 6391.Google Scholar
Steiger, R. H. & Jäger, E. 1977. Subcommission on geochronology: convention of the use of decay con stants in geo and cosmochronology. Earth and Planetary Science Letters 36, 359–62.CrossRefGoogle Scholar
Thorogood, E. J. 1990. Provenance of the pre-Devonian sediments of England and Wales: Sm-Nd isotopic evidence. Journal of the Geological Society, London 147, 591–4.CrossRefGoogle Scholar
Thorpe, R. S., Beckinsale, R. D., Patchett, P. J., Piper, J. D. A., Davies, G. R. & Evans, J. A. 1984. Crustal growth and late Precambrian-early Palaeozoic plate tectonic evolution of England and Wales. Journal of the Geological Society, London 141, 521–36.CrossRefGoogle Scholar
Tucker, R. D. & Pharaoh, 1991. U-Pb ages for Late Precambrian igneous rocks in southern Britain. Journal of the Geological Society, London 147, 435–43.CrossRefGoogle Scholar
Wilson, M. 1989. Igneous Petrogenesis. A Global Tectonic Approach. London: Unwin Hyman.CrossRefGoogle Scholar
Winchester, J. A. & Floyd, P. A. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology 20, 325–43.CrossRefGoogle Scholar