Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-05T04:21:28.514Z Has data issue: false hasContentIssue false

Genesis and implications of the Late Jurassic Hailesitai granites in the northern Greater Khingan Range: evidence from zircon U–Pb dating and Hf isotope

Published online by Cambridge University Press:  11 July 2016

PINGPING ZHU
Affiliation:
Faculty of Earth Resources, China University of Geosciences, Wuhan 430074, China State Key Laboratory of Geological Process and Mineral Resources, China University of Geosciences, Wuhan 430074, Beijing 100083, China
QIUMING CHENG
Affiliation:
Faculty of Earth Resources, China University of Geosciences, Wuhan 430074, China State Key Laboratory of Geological Process and Mineral Resources, China University of Geosciences, Wuhan 430074, Beijing 100083, China School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
ZHENJIE ZHANG*
Affiliation:
School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
ZIYE WANG
Affiliation:
State Key Laboratory of Geological Process and Mineral Resources, China University of Geosciences, Wuhan 430074, Beijing 100083, China
*
Author for correspondence: [email protected]; [email protected]

Abstract

The tectonic setting and geodynamic model of the Greater Khingan Range (GKR) is highly controversial due to the lack of reliable geological, isotopic and geochronological evidence. In the current study, the Hailesitai pluton, located at the west of the suture between the northern and southern GKR in the east of the Central Asian Orogenic Belt, is selected to address this issue. These granites of the high potassium calc-alkaline series belong to the A1-type granites with typical geochemical characteristics including high contents of Al2O3, extremely low contents of Ti, P, enriched LREE, LILE, depleted HFSE, and a medium Eu negative anomaly. Laser ablation inductively coupled plasma mass spectrometer (LA-ICP-MS) zircon U−Pb dating indicates that the granites can be divided into two stages: c. 152 and c. 161 Ma. The intrusion of A1-type granites at ~161 Ma implies that intra-plate orogenesis of the northern GKR started at c. 161 Ma at latest. The Hailesitai pluton has relatively homogeneous Hf isotope compositions with a εHf (t) value (+6.0 − +9.0), and two-stage depleted mantle model ages of 579−738 Ma show that the original magma is a mixture of juvenile and crustal source rocks. Extensional collapse of the Mongol−Okhotsk belt between the Siberia block and the northern GKR resulted in the formation of late Jurassic A1-type granites in the northern GKR. The Hailesitai pluton formed in response to post-orogenic extensional collapse of the Mongol–Okhotsk belt, coupled with back-arc extension related to Palaeo-Pacific plate subduction.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allègre, C. J. & Minster, J. F. 1978. Quantitative models of trace element behavior in magmatic processes. Earth and Planetary Science Letters 38, 125.CrossRefGoogle Scholar
Andersen, T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology 192, 5979.CrossRefGoogle Scholar
Barth, M. G., Nough, W. F. & Rudnick, R. L. 2000. Tracking the budget of Nb and Ta in the continental crust. Chemical Geology 165, 197213.CrossRefGoogle Scholar
Batchelor, R. A. & Bowden, P. 1985. Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chemical Geology 48, 4355.CrossRefGoogle Scholar
Blichert-Toft, J., Chauvel, C. & Albarède, F. 1997. Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector-multiple collector ICP-MS. Contributions to Mineralogy and Petrology 127, 248–60.CrossRefGoogle Scholar
Bonin, B. 2007. A-type granites and related rocks: evolution of a concept, problems and prospects. Lithos 97, 129.CrossRefGoogle Scholar
Chen, Y., Li, D., Liu, C. & Liu, J. 2014. Formation and evolution history of the Da Hinggan Mountains: evidence from geochemistry of rivers’ overbank sediments, their zircon U-Pb ages and Hf isotopic compositions. Acta Geologica Sinica 88, 114.CrossRefGoogle Scholar
Collins, W. J., Beams, S. D., White, A. J. R. & Chappell, B. W. 1982. Nature and origin of A-type granites with particular reference to southeastern Australia. Contributions to Mineralogy and Petrology 80, 189200.CrossRefGoogle Scholar
Cui, F., Zheng, C., Xu, X., Yao, W., Shi, L., Li, J. & Xu, J. 2013. Late Carboniferous magmatic activities in the Quanshenglinchang area, Great Xingan Range: constraints on the timing of amalgamation between Xingan and Songnen Massifs. Acta Geologica Sinica 87, 1247–63 (in Chinese with English abstract).Google Scholar
Dai, H., Yang, Z., Ma, Z. & Gong, C. 2013. The petrogeochemical characteristics and tectonic setting of Mesozoic intrusive rocks in Chabaqi area of the Da Hinggan Mountains. Geologica of China 40, 232–47 (in Chinese with English abstract).Google Scholar
Eby, G. N. 1990. The A-type granitoids: a review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos 26, 115–34.CrossRefGoogle Scholar
Eby, G. N. 1992. Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications. Geology 20, 641–4.2.3.CO;2>CrossRefGoogle Scholar
Eizenhöfer, P. R., Zhao, G., Zhang, J. & Sun, M. 2014. Timing of final closure of the Paleo-Asian Ocean along the Solonker Suture Zone: constraints from the provenance analysis of detrital zircons from Permian sedimentary rocks. Tectonics 33, 441–63.CrossRefGoogle Scholar
Fan, W., Guo, F., Wang, Y. & Lin, G. 2003. Late Mesozoic calc-alkaline volcanism of post-orogenic extension in the northern Da Hinggan Mountains, northeastern China. Journal of Volcanology and Geothermal Research 121, 115–35.CrossRefGoogle Scholar
Fisher, C. M., Vervoort, J. D. & Hanchar, J. M. 2014. Guidelines for reporting zircon Hf isotopic data by LA-MC-ICPMS and potential pitfalls in the interpretation of these data. Chemical Geology 363, 125–33.CrossRefGoogle Scholar
Foland, K. A. & Allen, J. C. 1991. Magma sources for Mesozoic anorogenic granites of the White Mountain magma series, New England, USA. Contributions to Mineralogy and Petrology 109, 195211.CrossRefGoogle Scholar
Frost, B. R., Barnes, C. G., Collins, W. J., Arculus, R. J., Ellis, D. J. & Frost, C. D. 2001. A geochemical classification for granitic rocks. Journal of Petrology 42, 2033–48.CrossRefGoogle Scholar
Frost, C. D. & Frost, B. R. 2010. On ferroan (A-type) granitoids: their compositional variability and modes of origin. Journal of Petrology 52, 3953.CrossRefGoogle Scholar
Gao, S., Zhang, B., Gu, X., Xie, Q., Gao, C. & Guo, X. 1995. Silurian-Devonian provenance changes of South Qinling basins: implications for accretion of the Yangtze (South China) to the North China cratons. Tectonophysics 250, 183–97.CrossRefGoogle Scholar
Ge, W., Lin, Q., Sun, D., Wu, F. & Li, X. 2000. Geochemical research into origins of two types of Mesozoic rhyolites in Daxing'anling. Earth Science – Journal of China University of Geosciences 25, 172–8 (in Chinese with English abstract).Google Scholar
Ge, W., Lin, Q., Sun, D., Wu, F., Won, C. K., Lee, M., Jin, M. & Yun, S. 1999. Geochemical characteristics of the Mesozoic basalts in Da Hinggan Ling: evidence of the mantle-crust interaction. Acta Petrologica Sinica 15, 396407 (in Chinese with English abstract).Google Scholar
Graham, S. A., Hendrix, M. S., Johnson, C. L., Badamgarav, D., Badarch, G., Amory, J., Porter, M., Barsbold, R., Webb, L. E. & Hacker, B. R. 2001. Sedimentary record and tectonic implications of Mesozoic rifting in southeast Mongolia. Geological Society of America Bulletin 113, 1560–79.2.0.CO;2>CrossRefGoogle Scholar
Griffin, W. L., Pearson, N. J., Belousova, E., Jackson, S. E., van Achterbergh, E., O'Reilly, S. Y. & Shee, S. R. 2000. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta 64, 133–47.CrossRefGoogle Scholar
Guo, F., Fan, W. M., Wang, Y. J. & Lin, G. 2001. Petrogenesis of the late Mesozoic bimodal volcanic rocks in the southern DaHinggan Moutains, China. Acta Petrologica Sinica 17, 161–8 (in Chinese with English abstract).Google Scholar
Hofmann, A. W. 1986. Nb in Hawaiian magmas: constraints on source composition and evolution. Chemical Geology 57, 1730.CrossRefGoogle Scholar
Horstwood, M. S. A., Košler, J., Gehrels, G., Jackson, S. E., Mclean, N. M., Paton, C., Pearson, N. J., Sircombe, K., Sylvester, P., Vermeesch, P., Bowring, J. F., Condon, D. J. & Schoene, B. 2016. Community-derived standards for LA-ICP-MS U-(Th-)Pb geochronology: uncertainty propagation, age interpretation and data reporting. Geostandards and Geoanalytical Research, DOI: 10.1111/j.1751-908X.2016.00379.x.CrossRefGoogle Scholar
Huang, J. & Zhao, D. 2006. High-resolution mantle tomography of China and surrounding regions. Journal of Geophysical Solid-Earth Research 111, 4813–25 (in Chinese with English abstract).CrossRefGoogle Scholar
Huang, D., Zhu, L., Hou, Q., Wang, J., Liu, J., Chen, Y., Wang, Z. & Li, D. 2014. Geochemistry of granitoid rocks of Weilasituo Deposit, Inner Mongolia and its tectonic significance. Geoscience 28, 1122–37 (in Chinese with English abstract).Google Scholar
Jahn, B. 2004. The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic. In Aspects of the Tectonic Evolution of China (eds Malpas, J., Fletcher, C. J. N., Ali, J. R. & Aitcheson, J. C.), pp. 73100. Geological Society of London, Special Publication no. 226.Google Scholar
Jahn, B., Litvinovsky, B., Zanvilevich, A. & Reichow, M. 2009. Peralkaline granitoid magmatism in the Mongolian-Transbaikalian Belt: evolution, petrogenesis and tectonic significance. Lithos 113, 521–39.CrossRefGoogle Scholar
Kerr, A. & Fryer, B. J. 1993. Nd isotope evidence for crust-mantle interaction in the generation of A-type granitoid suites in Labrador, Canada. Chemical Geology 104, 3960.CrossRefGoogle Scholar
Larson, R. L. & Olson, P. 1991. Mantle plumes control magnetic reversal frequency. Earth and Planetary Science Letters 107, 437–47.CrossRefGoogle Scholar
Lei, C. & Wang, X. 2011. Paleogene large-scale volcanism and prospecting implication in the east sag-uplift of Nyanqentanglha arc-back in Tibet, China. Journal of Chengdu University of Technology 38, 571–80 (in Chinese with English abstract).Google Scholar
Li, J. 2006. Permian geodynamic setting of Northeast China and adjacent regions: closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate. Journal of Asian Earth Sciences 26, 207–24.CrossRefGoogle Scholar
Li, Y., Liu, B., Zhao, H., Zhang, Y. & Han, Y. 2005. Mesozoic structural stress field characteristics of the Genghe area of the North Daxinganling. Geotectonica et Metallogenia 29, 443–50 (in Chinese with English abstract).Google Scholar
Lin, Q., Ge, W., Cao, L., Sun, D. & Lim, K. 2003. Geochemistry of Mesozoic volcanic rocks in Da Hinggan Ling: the bimodel volcanic rocks. Geochimica 32, 208–22 (in Chinese with English abstract).Google Scholar
Lin, Q., Ge, W., Sun, D., Wu, F., Chong, K., Kyung, D., Myung, S., Moon, W., Chi, S. & Sung, H. 1999. Tectonic significance of Mesozoic volcanic rocks in Northeastern China. Scientia Geologica Sinica 33, 129–39 (in Chinese with English abstract).Google Scholar
Liu, Y., Gao, S., Hu, Z., Gao, C., Zong, K. & Wang, D. 2010. Continental and oceanic crust recycling-induced melt peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology 51, 537–71.CrossRefGoogle Scholar
Liu, Y., Zong, K., Kelemen, P. B. & Gao, S. 2008. Geochemistry and magmatic history of eclogites and ultramafic rocks from the Chinese continental scientific drill hole: subduction and ultrahigh-pressure metamorphism of lower crustal cumulates. Chemical Geology 247, 133–53.CrossRefGoogle Scholar
Loiselle, M. C. & Wones, D. R. 1979. Characteristics and origin of anorogenic granites. Geological Society of America Abstracts with Programs 11, 468.Google Scholar
Ludwig, K. R. 2009. Isoplot v. 3.71: A Geochronological Toolkit for Microsoft Excel. Geochronology Center, Berkeley, Special Publication 4.Google Scholar
Ma, C., She, Z., Xu, P. & Wang, L. 2004. The A-type granite in the southern margin of the Tongbai-Dabie Mountains: evidence from SHRIMP zircon geochronology and petrology geochemistry. Science in China (D Series: Earth Science) 34, 1100–10 (in Chinese with English abstract).Google Scholar
Maruyama, S., Isozaki, Y., Kimura, G. & Terabayashi, M. 2006. Paleogeographic maps of the Japanese Islands: plate tectonic synthesis from 750 Ma to the present. Island Arc 6, 121–42.CrossRefGoogle Scholar
Maruyama, S., Santosh, M. & Zhao, D. 2007. Superplume, supercontinent, and post-perovskite: mantle dynamics and anti-plate tectonics on the Core–Mantle Boundary. Gondwana Research 11, 737.CrossRefGoogle Scholar
McDonough, W. F. & Sun, S. 1995. The composition of the Earth. Chemical Geology 120, 223–53.CrossRefGoogle Scholar
Meng, Q. 2003. What drove late Mesozoic extension of the northern China-Mongolia tract? Tectonophysics 369, 155–74.CrossRefGoogle Scholar
Miller, C. F., Meschterwell, S. & Mapes, R. W. 2003. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology 31, 529–32.2.0.CO;2>CrossRefGoogle Scholar
Pearce, J. A., Harris, N. B. W. & Tindle, A. G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology 25, 956–83.CrossRefGoogle Scholar
Ren, J., Niu, B. & Liu, Z. 1999. Soft collision, superposition orogeny and polycylic suturing. Earth Science Frontiers 6, 8593 (in Chinese with English abstract).Google Scholar
Sagong, H., Kwon, S. T. & Ree, J. H. 2005. Mesozoic episodic magmatism in South Korea and its tectonic implication. Tectonics 24, 125–7.CrossRefGoogle Scholar
Scherer, E., Munker, C. & Mezger, K. 2001. Calibration of the lutetium-hafnium clock. Science 293, 683–7.CrossRefGoogle ScholarPubMed
Shao, J., Mu, B., Zhu, H. & Zhang, L. 2010. Material source and tectonic settings of the Mesozoic mineralization of the DaHinggan Mts. Acta Petrologica Sinica 26, 649–56 (in Chinese with English abstract).Google Scholar
Shao, J., Zang, S., Mou, B., Li, X. & Wang, B. 1994. Extensional tectonics and asthenospheric upwelling in the orogenic belt: a case study from Hinggan-Mongolia Orogenic belt. Chinese Science Bulletin 39, 533–7 (in Chinese with English abstract).Google Scholar
Sui, Z., Ge, W., Xu, X. & Zhang, J. 2009 a. Characteristics and geological implications of the Late Paleozoic post-orogenic Shierzhan granite in the Great Xing'an Range. Acta Petrologica Sinica 25, 2679–86 (in Chinese with English abstract).Google Scholar
Sui, Z., Ge, W, Wu, F. & Xu, X. 2009 b. Hf isotopic characteristics and geological significance of the Chahayan Pluton in Northern Daxing'anling Mountains. Journal of Jilin University 39, 849–56 (in Chinese with English abstract).Google Scholar
Sun, D., Gou, J., Wang, T., Ren, Y., Liu, Y., Guo, H., Liu, X. & Hu, Z. 2013. Geochronological and geochemical constraints on the Erguna massif basement, NE China: subduction history of the Mongol-Okhotsk oceanic crust. International Geology Review 55, 1801–16.CrossRefGoogle Scholar
Sun, W., Chi, X., Zhao, Z., Pan, S., Liu, J., Zhang, R. & Quan, J. 2014. Zircon geochronology constraints on the age and nature of ‘Precambrian metamorphic rocks’ in the Xing'an block of Northeast China. International Geology Review 56, 672–94.CrossRefGoogle Scholar
Tang, J., Xu, W. L., Wang, F., Wang, W., Xu, M. J. & Zhang, Y. H. 2013. Geochronology and geochemistry of Neoproterozoic magmatism in the Erguna Massif, NE China: petrogenesis and implications for the breakup of the Rodinia supercontinent. Precambrian Research 224, 597611.CrossRefGoogle Scholar
Tomurtogoo, O., Badarch, G., Liu, D., Windley, B. F. & Kröner, A. 2005. Zircon age and occurrence of the Adaatsag ophiolite and Muron shear zone, central Mongolia: constraints on the evolution of the Mongol-Okhotsk ocean, suture and orogen. Journal of the Geological Society 162, 125–34.CrossRefGoogle Scholar
Voo, R. V. D., Spakman, W. & Bijwaard, H. 1999. Mesozoicsubducted slabs under Siberia. Nature 397, 246–9.Google Scholar
Wang, F., Zhou, X., Zhang, L., Ying, J., Zhang, Y., Wu, F. & Zhu, R. 2006. Late Mesozoic volcanism in the Great Xing'an Range (NE China): timing and implications for the dynamic setting of NE Asia. Earth and Planetary Science Letters 251, 179–98.CrossRefGoogle Scholar
Wang, P., Liu, W., Wang, S. & Song, W. 2002. 40Ar/39Ar and K/Ar dating on the volcanic rocks in the Songliao basin, NE China: constraints on stratigraphy and basin dynamics. International Journal of Earth Sciences 91, 331–40.CrossRefGoogle Scholar
Wang, T., Guo, L., Zhang, L., Yang, Q., Zhang, J., Tong, Y. & Ye, K. 2015. Timing and evolution of Jurassic-Cretaceous granitoid magmatisms in the Mongol-Okhotsk belt and adjacent areas, NE Asia: implications for transition from contractional crustal thickening to extensional thinning and geodynamic settings. Journal of Asian Earth Sciences 97, 365–92.CrossRefGoogle Scholar
Wang, X., Xu, Z., Liu, Z. & Zhu, K. 2012. Petrogenesis and tectonic setting of the K-feldspar granites in Chaihe area, central Greater Xing'an Range: constraints from petro-geochemistry and zircon U-Pb isotope chronology. Acta Petrologica Sinica 28, 2647–55 (in Chinese with English abstract).Google Scholar
Wang, Y. & Zhao, Z. 1997. Geochemistry and origin of the Baerzhe REE-Nb-Be-Zr super-large deposit. Geochimica 26, 2435 (in Chinese with English abstract).Google Scholar
Whalen, J. B., Currie, K. L. & Chappell, B. W. 1987. A-type granites: geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy & Petrology 95, 407–19.CrossRefGoogle Scholar
Woodhead, J., Hergt, J., Shelley, M., Eggins, S. & Kemp, R. 2004. Zircon Hf-isotope analysis with an excimer laser, depth profiling, ablation of complex geometries, and concomitant age estimation. Chemical Geology 209, 121–35.CrossRefGoogle Scholar
Wu, F., Han, R., Yang, J., Wilde, S. A., Zhai, M. & Park, S. C. 2007. Initial constraints on the timing of granitic magmatism in North Korea using U–Pb zircon geochronology. Chemical Geology 238, 232–48.CrossRefGoogle Scholar
Wu, F., Jahn, B. M., Wilde, S. & Sun, D. 2000. Phanerozoic crustal growth: U-Pb and Sr-Nd isotopic evidence from the granites in northeastern China. Tectonophysics 328, 89113.CrossRefGoogle Scholar
Wu, F., Lin, J., Wilde, S. A., Zhang, X. & Yang, J. 2005. Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth and Planetary Science Letters 233, 103–19.CrossRefGoogle Scholar
Wu, F., Sun, D., Ge, W., Zhang, Y., Grant, M. L., Wilde, S. A. & Jahn, B. M. 2011. Geochronology of the Phanerozoic granitoids in northeastern China. Journal of Asian Earth Sciences 41, 130.CrossRefGoogle Scholar
Wu, F., Sun, D., Li, H., Jahn, B. & Wilde, S. 2002. A-type granites in northeastern China: age and geochemical constraints on their petrogenesis. Chemical Geology 187, 143–73.CrossRefGoogle Scholar
Wu, F., Yang, J., Lo, C., Wilde, S. A., Sun, D. & Jahn, B. M. 2007. The Heilongjiang Group: a Jurassic accretionary complex in the Jiamusi Massif at the western Pacific margin of northeastern China. Island Arc 16, 156–72.CrossRefGoogle Scholar
Yuan, H., Gao, S., Dai, M., Zong, C., Günther, D., Fontaine, G., Liu, X. & Diwu, C. 2008. Simultaneous determinations of U–Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS. Chemical Geology 247, 100–18.CrossRefGoogle Scholar
Zhang, C., Holtz, F., Koepke, J., Berndt, J. & Ma, C. 2014. Decompressional anatexis in the migmatite core complex of northern Dabie orogen, eastern China: petrological evidence and Ti-in-quartz thermobarometry. Lithos 202, 227–36.CrossRefGoogle Scholar
Zhang, D., Wei, J., Fu, L., Chen, H., Tan, J., Li, Y., Shi, W. & Tian, N. 2015. Formation of the Jurassic Changboshan-Xieniqishan highly fractionated I-type granites, northeastern China: implication for the partial melting of juvenile crust induced by asthenospheric mantle upwelling. Geological Journal 50, 122–38.CrossRefGoogle Scholar
Zhang, J., Gao, S., Ge, W., Wu, F., Yang, J., Wilde, S. A. & Li, M. 2010. Geochronology of the Mesozoic volcanic rocks in the Great Xing'an Range, northeastern China: implications for subduction-induced delamination. Chemical Geology 276, 144–65.CrossRefGoogle Scholar
Zhang, J., Ge, W., Wu, F. & Liu, X. 2006. Mesozoic bimodal volcanic suite in Zhalantun of the Da Hinggan Range and its geological significance: Zircon U-Pb age and Hf isotopic constraints. Acta Geologica Sinica (English Edition) 80, 5869.Google Scholar
Zhang, J., Ge, W., Wu, F., Wilde, S. A., Yang, J. & Liu, X. 2008. Large-scale Early Cretaceous volcanic events in the northern Great Xing'an Range, Northeastern China. Lithos 102, 138–57.CrossRefGoogle Scholar
Zhang, L., Liu, Y., Li, W., Han, G., Zhang, J., Zhao, Z., Jian, X. & Guo, Q. 2013. Discussion on the basement properties and east boundary of the Ergun massif. Scientia Geologica Sinica 48, 227–44 (in Chinese with English abstract).Google Scholar
Zhang, L., Zhou, X., Ying, J., Wang, F., Guo, F., Wan, B. & Chen, Z. 2008. Geochemistry and Sr-Nd-Pb-Hf isotopes of Early Cretaceous basalts from the Great Xinggan Range, NE China: implications for their origin and mantle source characteristics. Chemical Geology 256, 1223.CrossRefGoogle Scholar
Zhang, Q., Ran, H. & Li, C. 2012. A-type granite: what is the essence? Acta Petrologica et Mineralogica 31, 621–6 (in Chinese with English abstract).Google Scholar
Zhang, W., Nie, F., Liu, Y., Jiang, S., Xu, H., Lai, X. & Pi, X. 2007. Studies on sulfur and lead isotope of the Areheda Pb-Zn-Ag deposit Dong Ujmqin Qi (County), Inner Mongolia. Journal of Jilin University (Earth Science Edition) 37, 868–77 (in Chinese with English abstract).Google Scholar
Zhang, X., Yuan, L. L., Xue, F., Yan, X. & Mao, Q. 2015. Early Permian A-type granites from central Inner Mongolia, North China: magmatic tracer of post-collisional tectonics and oceanic crustal recycling. Gondwana Research 28, 311–27.CrossRefGoogle Scholar
Zhang, Y., Ge, W. & Liu, X. 2008. Isotopic characteristics and its significance of the Xinlin Town pluton, Great Hinggan Mountains. Journal of Jilin University 38, 177–86 (in Chinese with English abstract).Google Scholar
Zhang, Y., Sun, S. & Mao, Q. 2006. Mesozoic O-type adakitic volcanic rocks and its petrogenesis, paleo-tectonic dynamic and mineralization significance of the eastern side of southern Da Hinggan, China. Acta Petrogica Sinica 22, 2289–304 (in Chinese with English abstract).Google Scholar
Zhang, Z., Zuo, R. & Cheng, Q. 2014. The mineralization age of the Makeng Fe deposit, South China: implications from U-Pb and Sm-Nd geochronology. International Journal of Earth Sciences 104, 663–82.CrossRefGoogle Scholar
Zhao, Z., Chi, X., Liu, J., Wang, T. & Hu, Z. 2010. Late Paleozoic arc-related magmatism in Yakeshi region, Inner Mongolia: chronological and geochemical evidence. Acta Petrologica Sinica 26, 3245–58 (in Chinese with English abstract).Google Scholar
Zhou, J., Wilde, S. A., Zhang, X., Ren, S. & Zheng, C. 2011. Early Paleozoic metamorphic rocks of the Erguna block in the Great Xing'an Range, NE China: evidence for the timing of magmatic and metamorphic events and their tectonic implications. Tectonophysics 499, 105–17.CrossRefGoogle Scholar
Zhou, X., Ying, J., Zhang, L. & Zhang, Y. 2009. The petrogenesis of Late Mesozoic volcanic rock and the contributions from ancient micro-continents: constraints from the zircon U-Pb dating and Sr-Nd-Pb-Hf isotopic systematics. Earth Science 34, 110 (in Chinese with English abstract).Google Scholar
Zhu, H., Chen, Y., Wu, G., Li, Y., Zhang, Y., Wu, T., Liu, Y., Wang, C. & Liu, X. 2013. Zircon U-Pb ages, geochemistry features and its geological implication of Early Cretaceous granites in Xinsheng area of Heihe City. Global Geology 32, 665–80 (in Chinese with English abstract).Google Scholar