Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-23T17:31:04.042Z Has data issue: false hasContentIssue false

A Garnet-Hornblende-Pyroxene Rock from Glenelg, Inverness-shire

Published online by Cambridge University Press:  01 May 2009

M. J. ÓHara
Affiliation:
Grant Institute of Geology, Edinburgh.

Abstract

A garnet-hornblende-two pyroxene rock from Glenelg is described. It is assigned to the eclogite facies by virture of its density, mineral composition, and associations. Its chemical composition is that of a picrite-basalt. Comparison with other garnet-pyroxene assemblages suggests that there are no clear differences between the partition of major and minor elements in these minerals at the eclogite and granulite facies of metamorphism. A diagram to represent parageneses in basic and ultrabasic rocks of the eclogite facies is presented, and points of interest discussed.

Type
Articles
Copyright
Copyright © Cambridge University Press 1960

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alderman, A. R., 1936. Eclogites from the neighbourhood of Glenelg, Inverness-shire. Quart. Journ. Geol. Soc., xcii, 488530.CrossRefGoogle Scholar
Angel, F., and Schaider, F., 1950. Granat und omphazit aus dem eklogit des Gertrusk (Saualpe, Karnten). Carinthia II, Naturweiss Beitr. Karntens, Jahrg., lviii–lx, 3136.Google Scholar
Bowen, N. L., and F, J. Schairer. 1935 (a). Grunerite from Rockport, Massachusetts. Amer. Min., xx, 543551.Google Scholar
Bowen, N. L., and F, J. Schairer. 1935 (b). The system FeO-MgO-SiO2. Amer. Journ. Sci., xxix, 151217.CrossRefGoogle Scholar
Briere, Y., 1920. Les Eclogites francaises. Bull. Soc. Franc. Min., xliii, 72222.Google Scholar
Brown, G. M., 1957. Pyroxenes from the early and middle stages of fractionation of the Skaergaard Intrusion, East Greenland. Miner. Mag., xxxi, 511543.Google Scholar
Buddington, A. F., 1952. The chemical petrology of some metamorphosed Adirondack gabbroic rocks. Amer. Journ. Sci., Bowen Volume, 3784.Google Scholar
Clough, C. T. et al. , 1910. Geology of Glenelg, Lochalsh, and the south-east part of Skye. Mem. Geol. Surv. Scotland.Google Scholar
Vesco, Dal E., 1953. Genesi e metamorfosi delle rocce basiche e ultrabasiche nell'ambiente mesozonale dell'orogene Pennidico, Cantone Ticino. Schweiz. Min. Petr. Mitt., xxxiii, 173480.Google Scholar
Davidson, C. F., 1944. The archean rocks of the Rodil district, South Harris, Outer Hebrides. Trans. Roy. Soc. Edinburgh, lxi, 71112.CrossRefGoogle Scholar
Eskola, P., 1920. The Mineral Facies of Rocks. Norsk. Geol. Tiddskr., vi, 143194.Google Scholar
Eskola, P., 1921. On the eclogites of Norway. Vidennsk. Skrift. I. Mat. Naturv. Klasse, viii, 1118.Google Scholar
Fyfe, W. S., Turner, F. J. and Verhoogen, J., 1958. Metarmorphic reactions and metamorphic facies. Geol. Soc. Amer. Mem., lxxiii.Google Scholar
Grubenmann, U., 1908. Der granatolivinfels des Gordunotales, und seine begleitgesteine. Viert. Nat. Ges. Zurich, liii, 129156.Google Scholar
Henry, N. F. M., 1942. Lamellar structure in orthopyroxenes. Miner. Mag., xxvi, 179189.Google Scholar
Hess, H. H., 1949. Chemical composition and optical properties of common clinopyroxenes. Amer. Min., xxxvi, 621666.Google Scholar
Howie, R. A., 1955. The Geochemistry of the charnockite series of Madras, India. Trans. Roy. Soc. Edinburgh, lxii, 725768.CrossRefGoogle Scholar
Howie, R. A., and Subramaniam, A. P., 1957. The paragenesis of garnet in charnockite, enderbite, and related granulites. Miner. Mag., xxx, 565587.Google Scholar
Jaffe, H. W., 1951. Role of Yttrium and other minor elements in the garnet group. Amer. Min., xxxvi, 133155.Google Scholar
Keith, M. L., and Rustum, Roy, 1954. Structural relationsamong double oxides of trivalent elements. Amer. Min., xxxix, 123.Google Scholar
Kennedy, W. Q., and von Knorring, O., 1958. The mineral paragenesis and metamorphic status of garnet-hornblende-pyroxene-scapolite gneiss from Ghana, Gold Coast. Miner. Mag., xxxi, 846859.Google Scholar
Kokta, J., and Nemec, K., 1936. Granat ultrabasickyck hornin od Cernina. Veda. Prirodni. Praha, xvii, 176180.Google Scholar
Muir, I. D., and Tilley, C. E., 1958. The compositions of co-existing pyroxenes in metamorphic assemblages. Geol. Mag., xcv, 403409.CrossRefGoogle Scholar
Murray, R. J., 1954. The clinopyroxenes of the Garbh Eilean sill, Shiant Isles. Geol. Mag., xci, 1731.CrossRefGoogle Scholar
OóHara, M. J., 1959. Unpublished Ph.D. thesis, Cambridge.Google Scholar
Ramberg, H., and de Vore, G., 1951. The distribution of Fe and Mg in co-existing olivines and pyroxenes. Journ. Geol., lix, 193210.CrossRefGoogle Scholar
Sahlstein, T. G., 1935. Petrographie der eklogitenschlusse in den gneissen des sud-westlichen Liverpool Landes in Ost Gronland. Med. om Gronland, xcv, 5.Google Scholar
Subramaniam, A. P., 1956. Mineralogy and petrology of the Sittampundi complex, Salem district, Madras state. Bull. Geol. Soc. Amer., lxvii, 317390.CrossRefGoogle Scholar
Teall, J. J. H., 1891. On an eclogite from Loch Duich. Miner. Mag., ix, 217218.Google Scholar
Tilley, C. E., 1936. The paragenesis of kyanite eclogites. Miner. Mag., xxiv, 422432.Google Scholar
Troger, W. E., 1956. Optische bestimmung der minerale. Stuttgart.Google Scholar
Washington, H. S., 1917. Chemical analyses of igneous rocks, 18841914. U.S. Geol. Surv. Prof. Paper, xcix.Google Scholar
Wilkinson, J. F. G., 1956. Clinopyroxenes of alkali olivine basalt magma. Amer. Min., xli, 724743.Google Scholar
Wilkinson, J. F. G., 1957. The clinopyroxenes of a differentiated teschenite sill near Gunnedah, New South Wales. Geol. Mag., xciv, 123134.CrossRefGoogle Scholar
Williams, A. F., 1932. The genesis of diamond. 2 vols. London.Google Scholar
Winchell, A. N., 1951. Elements of optical mineralogy. Part II. New York.Google Scholar