Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-07-05T23:55:14.840Z Has data issue: false hasContentIssue false

First documentation of the Ordovician Guttenberg δ13C excursion (GICE) in Asia: chemostratigraphy of the Pagoda and Yanwashan formations in southeastern China

Published online by Cambridge University Press:  05 November 2008

STIG M. BERGSTRÖM*
Affiliation:
School of Earth Sciences, Division of Geological Sciences, The Ohio State University, Columbus, Ohio 43210, USA
CHEN XU
Affiliation:
State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, People's Republic of China
BIRGER SCHMITZ
Affiliation:
GeoBiosphere Science Centre, Department of Geology, Lund University, Sölvegatan 12, Se-223 62 Lund, Sweden
SETH YOUNG
Affiliation:
School of Earth Sciences, Division of Geological Sciences, The Ohio State University, Columbus, Ohio 43210, USA
RONG JIA-YU
Affiliation:
State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, People's Republic of China
MATTHEW R. SALTZMAN
Affiliation:
School of Earth Sciences, Division of Geological Sciences, The Ohio State University, Columbus, Ohio 43210, USA
*
Author for correspondence: [email protected]

Abstract

The only published δ13C data from the Ordovician of China are from the Lower and Upper Ordovician, and only the latter records include a significant excursion, namely the Hirnantian excursion (HICE). Our recent chemostratigraphic work on the Upper Ordovician (Sandbian–Katian) Pagoda and Yanwashan formations at several localities on the Yangtze Platform and Chiangnan (Jiangnan) slope belt has resulted in the recognition of a positive δ13C excursion that has values of ~+1.5‰ above baseline values. This excursion starts a few metres above a stratigraphic interval with B. alobatus Subzone conodonts as well as graptolites of the N. gracilis Zone. The distinctive conodonts Amorphognathus aff. Am. ventilatus and Hamarodus europaeus first occur at, or very near, the excursion interval. Because these conodonts appear in the stratigraphic interval of the Guttenberg δ13C excursion (GICE) in Estonia, we identify the Chinese excursion as the GICE. This is the first record of the GICE in the entire Asian continent. It confirms that GICE is a global excursion and provides an illustration of how δ13C chemostratigraphy, combined with new biostratigraphic data, solves the problem of the previously controversial age of the Pagoda Formation and how this classical stratigraphic unit correlates with the Baltoscandian and North American successions.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ainsaar, L., Meidla, T. & Martma, T. 1999. Evidence for a widespread carbon isotopic event associated with late Middle Ordovician sedimentological and faunal changes in Estonia. Geological Magazine 136, 4962.CrossRefGoogle Scholar
Ainsaar, L., Meidla, T. & Martma, T. 2004. The middle Caradoc facies and faunal turnover in the Late Ordovician Baltoscandian paleobasin. Palaeogeography, Palaeoecology, Palaeoclimatology 210, 119–33.CrossRefGoogle Scholar
An, Tai-xiang. 1987. Early Paleozoic conodonts from south China. Beijing: Beijing University Press, 128 pp.Google Scholar
Barta, N. C., Bergström, S. M., Saltzman, M. R. & Schmitz, B. B. 2007. First record of the Ordovician Guttenberg δ13C excursion (GICE) in New York State and Ontario: Local and regional chronostratigraphic implications. Northeastern Geology and Environmental Sciences 29, 276–98.Google Scholar
Bergström, S. M. 1971. Conodont biostratigraphy of the Middle and Upper Ordovician of Europe and Eastern North America. Geological Society of America Memoir 127, 83159.CrossRefGoogle Scholar
Bergström, S. M. 2007. The Ordovician conodont biostratigraphy in the Siljan region, south-central Sweden: a brief review of an international reference standard. In WOGOGOB 2007, 9th meeting of the Working Group on Ordovician Geology of Baltoscandia. Field Guide and Abstracts (eds Ebbestad, J. O. R., Wickström, L. M. & Högström, A. E. S.), pp. 2641, 63–78. Sveriges Geologiska Undersökning, Rapporter och Meddelanden 128.Google Scholar
Bergström, S. M., Chen, Xu, Gutttiérrez-Marco, J. C. & Dronov, A. 2008. The new chronostratigraphic classification of the Ordovician System and its relations to major regional series and stages and δ13C chemostratigraphy. Lethaia 41, doi: 10.1111/j.1502-3931.2008.00136.x.Google Scholar
Bergström, S. M., Xu, Chen, Young, S. A., Schmitz, B. & Saltzman, M. R. 2007 a. The first record of the Ordovician Guttenberg δ13C excursion (GICE) in Asia: Chemostratigraphy of the Pagoda Limestone and Yanwashan Formation in South-eastern China. Geological Society of America, Abstracts with Programs 39 (6), 145.Google Scholar
Bergström, S. M., Finney, S. C., Xu, Chen, Goldman, D. & Leslie, S. A. 2006. Three new Ordovician global stage names. Lethaia 39, 287–8.CrossRefGoogle Scholar
Bergström, S. M., Huff, W. D., Saltzman, M. R., Kolata, D. R. & Leslie, S. A. 2004. The greatest volcanic ash falls in the Phanerozoic: Trans-Atlantic relations of the Ordovician Millbrig and Kinnekulle K-bentonites. The Sedimentary Record 2, 48.CrossRefGoogle Scholar
Bergström, S. M., Saltzman, M. R. & Schmitz, B. 2006. First record of the Hirnantian (Upper Ordovician) δ13C excursion in the North American Midcontinent and its regional implications. Geological Magazine 143, 657–78.CrossRefGoogle Scholar
Bergström, S. M., Schmitz, B., Saltzman, M. R. & Huff, W. D. In press. The Upper Ordovician Guttenberg δ13C excursion (GICE) in North America and Baltoscandia: Occurrence, chronostratigraphic significance, and paleoenvironmental relationships. Geological Society of America Special Paper.Google Scholar
Bergström, S. M. & Sweet, W. C. 1966. Conodonts from the Lexington Limestone (Middle Ordovician) of Kentucky and its lateral equivalents in Ohio and Indiana. Bulletins of American Paleontology 50, 229, 269–441.Google Scholar
Bergström, S. M., Young, S., Schmitz, B. & Saltzman, M. R. 2007 b. Upper Ordovician (Katian) δ13C chemostratigraphy: A trans-Atlantic comparison. Acta Palaeontologica Sinica 46 (suppl.), 37–9.Google Scholar
Brenchley, P. J., Carden, G. A., Hints, L., Kaljo, D., Marshall, J. D., Martma, T., Meidla, T. & Nõlvak, J. 2003. High-resolution stable isotope stratigraphy of the Upper Ordovician sequences: Constraints on the timing of bioevents and environmental changes associated with mass extinction and glaciation. Geological Society of America Bulletin 115, 89104.2.0.CO;2>CrossRefGoogle Scholar
Brenchley, P. J., Marshall, J. D., Carden, G. A. E, Robertson, D. B. R., Long, D. G. F., Meidla, T., Hints, L. & Anderson, T. F. 1994. Bathymetric and isotopic evidence for a short-lived Late Ordovician glaciation in a greenhouse period. Geology 22, 295–8.2.3.CO;2>CrossRefGoogle Scholar
Brenchley, P. J., Marshall, J. D., Hints, L. & Nõlvak, J. 1997. New isotopic data solving an old biostratigraphic problem: the age of the upper Ordovician brachiopod Holorhynchus giganteus. Journal of the Geological Society, London 154, 335–42.CrossRefGoogle Scholar
Chen, Xu, Melchin, M. J., Sheets, H. D., Mitchell, C. E. & Fan, Jun-Xuan. 2005. Patterns and processes of latest Ordovician graptolite extinction and recovery based on data from South China. Journal of Paleontology 79, 842–61.Google Scholar
Chen, Xu & Qui, Jin-Yu. 1986. Ordovician palaeoenvironmental reconstruction of Yichang area, W. Hubei. Journal of Stratigraphy 10, 115.Google Scholar
Chen, Xu, Rong, Jia-Yu, Fan, Jun-Xuan, Zhan, Renbin, Mitchell, C. E., Harper, D. A. T., Melchin, M. J., Peng, Ping'an, Finney, S. C. & Wang, Xiao-Feng. 2006 a. The Global Stratotype Section and Point (GSSP) for the base of the Hirnantian Stage (the uppermost of the Ordovician System). Episodes 29, 183–96.CrossRefGoogle Scholar
Chen, Xu, Rong, Jia-Yu, Wang, Xiao-Feng, Wang, Zhi-hao, Zhang, Yuan-Dong & Zhan, Ren-Bin. 1995. Correlation of the Ordovician rocks of China. Chart and Explanatory Notes. International Union of Geological Sciences Publication 31, 1104.Google Scholar
Chen, Xu, Zhang, Yuan-Dong, Bergström, S. M. & Xu, Hong-Gen. 2006 b. Upper Darriwilian graptolite and conodont zonation in the global stratotype section of the Darriwilian Stage (Ordovician) at Huangnitang, Changshan, Zhejiang, China. Palaeoworld 15, 150–70.CrossRefGoogle Scholar
Dzik, J. 1999. Evolution of Late Ordovician high-latitude conodonts and dating of Gondwana glaciations. Bollettino della Società Paleontologica Italiana 37, 237–53.Google Scholar
Ferretti, A. & Barnes, C. R. 1997. Upper Ordovician conodonts from the Kalkbank Limestone of Thuringia, Germany. Palaeontology 40, 1542.Google Scholar
Finney, S. C., Berry, W. B. N., Cooper, J. D., Ripperdan, R. L., Sweet, W. C., Jacobson, S. R., Soufiane, A., Achab, A. & Noble, P. J. 1999. Late Ordovician mass extinction: A new perspective from stratigraphic sections in central Nevada. Geology 27, 215–18.2.3.CO;2>CrossRefGoogle Scholar
Holland, S. M. & Patzkowsky, M. E. 1996. Sequence stratigraphy and long-term paleoceanographic changes in the Middle and Upper Ordovician of eastern United States. Geological Society of America Special Paper 306, 117–29.Google Scholar
Jiang, Mao-Sheng, Zhu, Jing-Quan, Chen, Dai-Zhao, Zhang, Ren-Hu & Qiao, Guang-Sheng. 2001. Carbon and strontium isotope variations and responses to sea-level fluctuations in the Ordovician of the Tarim Basin. Science in China Series D 44, 816–24.CrossRefGoogle Scholar
Kaljo, D., Hints, L., Martma, T., Nõlvak, J. & Oraspõld, A. 2004. Late Ordovician carbon isotope trend in Estonia, its significance in stratigraphy and environmental analysis. Palaeogeography, Palaeoclimatology, Palaeoecology 210, 165–85.CrossRefGoogle Scholar
Kaljo, D., Martma, T. & Saadre, T. 2007. Post-Hunnebergian Ordovician carbon isotope trend in Baltoscandia, its environmental implications and some similarities to that of Nevada. Palaeogeography, Palaeoclimatology, Palaeoecology 245, 138–55.CrossRefGoogle Scholar
Liu, Yi-Ren & Fu, Han-Yin. 1989. A candidate stratotype section of Hanjiangian and Shikouan Stage (Ordovician) – The Shuangjiakou section of Qidong, Hunan. Journal of Stratigraphy 13, 16192, 235–54.Google Scholar
Ludvigson, G. A., Witzke, B. J., González, L. A., Carpenter, S. J., Schneider, C. L. & Hasiuk, F. 2004. Late Ordovician (Turinian–Chatfieldian) carbon isotope excursions and their stratigraphic and paleocenographic significance. Palaeogeography, Palaeoclimatology, Palaeoecology 210, 187214.CrossRefGoogle Scholar
Männik, P. 2003. Distribution of Ordovician and Silurian conodonts. In Estonian Geological Sections. Ruhnu (500) Drill Core (ed. Põldvere, A.), pp. 1723. Geological Survey of Estonia Bulletin 5.Google Scholar
Männik, P. 2004. Recognition of the mid-Caradoc event in the conodont succession of Estonia. In WOGOGOB-2004, 8th Meeting of the Working Group on the Ordovician Geology of Baltoscandia. Abstracts and Field Guidebook (eds Hints, O. & Ainsaar, L.), pp. 63–4. Institute of Geology, University of Tartu, Institute of Geology of Tallinn University of Technology and Geological Survey of Estonia.Google Scholar
Männik, P., Beznosova, T., Majdl, T. & Martma, T. 2004. Ordovician–Silurian boundry in the Subpolar Urals, some new developments. In WOGOGOB 2004, 8th Meeting of the Working Group on the Ordovician Geology of Baltoscandia, Abstracts and Field Guidebook (eds Hints, O. & Ainsaar, L.), pp. 65–6. Institute of Geology, University of Tartu, Institute of Geology of Tallinn University of Technology and Geological Survey of Estonia.Google Scholar
Männik, P. & Viira, V. 2005. Distribution of Ordovician conodonts. In Estonian Geological Sections. Mehikoorma (421) Drill Core (ed. Põldvere, A), pp. 1620. Geological Survey of Estonia Bulletin 6.Google Scholar
Marshall, J. D. & Middleton, P. D. 1990. Changes in marine isotopic composition and the late Ordovician glaciation. Journal of the Geological Society, London 147, 14.CrossRefGoogle Scholar
Martma, T. 2005. Ordovician carbon isotopes. In Estonian Geological Sections. Mehikoorma (421) drill core (ed. Põldvere, A.), pp. 25–7. Geological Survey of Estonia Bulletin 6.Google Scholar
Melchin, M. J., Holmden, N. C. & Williams, S. H. 2003. Correlation of graptolite biozones, chitinozoan biozones, and carbon isotope curves through the Hirnantian. In Ordovician from the Andes (eds Albanesi, G. L., Beresi, S. & Peralta, S. H.), pp. 101–4. INSUGEO Serie Correlatión Geológica 17.Google Scholar
Middleton, N. P. D., Marshall, J. D. & Brenchley, P. J. 1991. Evidence of isotopic change associated with Late Ordovician glaciation, from brachiopods and marine cements of central Sweden. Transactions of the Royal Society of Edinburgh, Earth Sciences 77, 313–24.Google Scholar
Nanjing Institute of Geology and Palaeontology. 1974. A Handbook of Stratigraphy and Palaeontology of southwest China. Beijing: Science Press, 454 pp.Google Scholar
Ni, Shi-Zhao & Li, Zhi-Hong. 1987. The Ordovician conodonts from the Yangtze Gorges area. In Biostratigraphy of Yangtze Gorges area (2) Early Palaeozoic Era, pp. 102–14, 386–447. Beijing: Geological Publishing House.Google Scholar
Saltzman, M. R., Bergström, S. M., Huff, W. D., & Kolata, D. R. 2003. Conodont and graptolite biostratigraphy and the Ordovician (early Chatfieldian, middle Caradocian) δ13C excursion in North America and Baltoscandia: implications for the interpretation of the relations between the Millbrig and Kinnekulle K-bentonites. In Ordovician from the Andes (eds Albanesi, G. L., Beresi, M. S. & Peralta, S. H.), pp. 137–42. INSUGEO, Serie Correlatión Geológica 17.Google Scholar
Saltzman, M. R. & Young, S. 2005. Long-lived glaciation in the Late Ordovician? Isotopic and sequence-stratigraphic evidence from western Laurentia. Geology 33, 109–12.CrossRefGoogle Scholar
Schmitz, B. & Bergström, S. M. 2007. Chemostratigraphy in the Swedish Upper Ordovician: Regional significance of the Hirnantian δ13C excursion (HICE) in the Boda Limestone of the Siljan region. GFF 129, 133–40.CrossRefGoogle Scholar
Sweet, W. C. & Bergström, S. M. 1984. Conodont provinces and biofacies of the Late Ordovician. Geological Society of America Special Paper 196, 6987.CrossRefGoogle Scholar
Trotter, J. A. & Webby, B. D. 1994. Upper Ordovician conodonts from the Malongulli Formation, Cliefden Caves area, central New South Wales. Journal of Australian Geology & Geophysics 15, 475–99.Google Scholar
Wang, K., Chatterton, B. D. E. & Wang, Y. 1997. An organic carbon isotope record of Late Ordovician to Early Silurian marine sedimentary rocks, Yangtze Sea, South China: Implications for CO2 changes during the Hirnantian glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology 132, 147–58.CrossRefGoogle Scholar
Wang, K., Orth, C. J., Attrep, M. Jr, Chatterton, B. D. E., Wang, Xiao-Feng & Li, Ji-Jin. 1993. The great latest Ordovician extinction on the South China Plate: Chemostratigraphic studies of the Ordovician–Silurian boundary interval on the Yangtze Platform. Palaeogeography, Palaeoclimatology, Palaeoecology 104, 6179.CrossRefGoogle Scholar
Wang, Xiao-Feng, Chen, Xiao-Hong & Erdtmann, B.-D. 1992. Ordovician chronostratigraphy – a Chinese approach. In Global perspectives on Ordovician geology (eds Webby, B. D. & Laurie, J. R.), pp. 3555. Rotterdam: A. A. Balkema.Google Scholar
Williams, S. H. 1982. Upper Ordovician graptolites from the top Lower Hartfell Shale Formation (D. clingani and P. linearis zones) near Moffat, southern Scotland. Transactions of the Royal Society of Edinburgh: Earth Sciences 72, 229–55.CrossRefGoogle Scholar
Williams, S. H. & Bruton, D. L. 1983. The Caradoc–Ashgill boundary in the central Oslo region and associated graptolite faunas. Norsk Geologisk Tidsskrift 63, 147–91.Google Scholar
Young, S. A., Saltzman, M. R. & Bergström, S. M. 2005. Upper Ordovician (Mohawkian) carbon isotope (δ13C) stratigraphy in eastern and central North America: Regional expression of a perturbation of the global carbon cycle. Palaeogeography, Palaeoclimatology, Palaeoecology 222, 5376.CrossRefGoogle Scholar
Zhan, Ren-Bin & Jin, Ji-Suo. 2007. Ordovician-Early Silurian (Llandovery) Stratigraphy and Palaeontology of the Upper Yangtze Platform, South China. Beijing: Science Press, 169 pp.Google Scholar
Zhang, Jian-Hua. 1998. Conodonts from the Guniutan Formation (Llanvirnian) in Hubei and Hunan Provinces, south-central China. Stockholm Contributions in Geology 46, 1151.Google Scholar
Zhang, Shun-Xin & Barnes, C. R. 2007. Late Ordovician to Early Silurian conodont faunas from the Kolyma Terrane, Omulev Mountains, northeast Russia, and their paleobiogeographic affinity. Journal of Paleontology 81, 490512.CrossRefGoogle Scholar
Zhao, Zhi-Xing, Zhang, Gui-Zhi & Xiao, Ji-Nan. 2000. Paleozoic stratigraphy and conodonts in Xinjiang. Petroleum Industry Press Beijing 11, 1111 (in Chinese with English abstract).Google Scholar