Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-20T07:19:13.888Z Has data issue: false hasContentIssue false

First discovery of Eocene coastal-estuarine ostracods from Japan, with the geological history of the migration of estuarine genera in the Far East

Published online by Cambridge University Press:  06 September 2017

GENGO TANAKA*
Affiliation:
Institute of Liberal Arts and Science, Kanazawa University, Kakumama-machi, Kanazawa City, Ishikawa 920-1192, Japan
YASUHISA HENMI
Affiliation:
Center for Marine Environment Studies, Kumamoto University, 6061 Aitsu, Matushima, Kami-amakusa City, Kumamoto 861-6102, Japan
TOSHIFUMI KOMATSU
Affiliation:
Graduate School of Science and Technology, Kumamoto University, 2-39-1, Kurokami, Kumamoto 860-8555, Japan
KOJI HIROSE
Affiliation:
Goshoura Cretaceous Museum, 4310-5, Goshoura, Amakusa City, Kumamoto 866-0313, Japan
HIROAKI UGAI
Affiliation:
Goshoura Cretaceous Museum, 4310-5, Goshoura, Amakusa City, Kumamoto 866-0313, Japan
SHIGEHIRO KAWANO
Affiliation:
Tochigi Prefectural Museum, 2-2, Mutsu-machi, Utsunomiya City, Tochigi 320-0865, Japan
HARUYOSHI MAEDA
Affiliation:
Kyushu University Museum, 6-10-1, Hakozaki, Fukuoka 812-8581, Japan
*
Author for correspondence: [email protected]

Abstract

The genus Neomonoceratina, which dominated the ostracod assemblage in the uppermost part of the Akasaki Formation (Miroku Group) of the Kyushu Island, Japan, is associated with the benthic foraminifer Ammonia cf. beccarii, mollusca Terebralia? sp. and Anomia sp., and the oogonium of Charophyceae, indicating a marine-to-brackish estuarine environment involving inflowing freshwater. This is the first record of Eocene coastal-estuarine ostracods from the eastern margin of the Eurasian continent and demonstrates that different pre-Neogene coastal-estuarine ostracod assemblages flourished in this region. The assemblages comprised five ostracod species (including one novel species) assigned to the genera Neomonoceratina, Paijeiborchella, Propontocypris and Parakrithella. These species exhibited genus-level links with the Eocene borehole cores along the continental shelf of the East China Sea and other areas of Kyushu. Fossil data of characteristic Eocene coastal-estuarine genera collected worldwide indicate that different characteristic genera inhabited each region. For example, Neomonoceratina originated on the Indian subcontinent by the Early Paleocene period at the latest, along with the northern drift of the Indian subcontinent. These species subsequently diversified west and east with the equatorial current and counter-current via the Tethys and reached the eastern margin of the Eurasian continent among the various eastwards-migrating species, where one genus ultimately adapted to the coastal-estuarine environment. Notably, the coastal-estuarine ostracod assemblage of the eastern margin of the Eurasian continent differs completely from that of the Tethys during the Eocene period. Our results suggest that coastal-estuarine ostracod assemblages are a powerful tool for palaeogeographic reconstruction.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, K. 1988. Speciation completed? In Keijella bisanensis species group. In Evolutionary Biology of Ostracoda: Its Fundamentals and Applications (eds Hanai, T., Ikeya, N. & Shizaki, K. I.), pp. 919–25. Tokyo: Kodansha.Google Scholar
Athersuch, J., Horne, D. J. & Whittaker, J. E. 1989. Ecology and distribution. In Marine and Brackish Water Ostracods (eds Athersuch, J., Horne, D. J. & Whittaker, J. E.), pp. 2834. New York: E. J. Brill.Google Scholar
Baba, A. K., Matsuda, T., Itaya, T., Wada, Y., Hori, N., Yokoyama, M., Eto, N., Kamei, R., Zaman, H., Kidane, T. & Otofuji, Y. I. 2007. New age constraints on counter-clockwise rotation of NE Japan. Geophysical Journal International 171, 1325–41.Google Scholar
Bassiouni, M. A. A. & Luger, P. 1996. Middle Eocene Ostracoda from Northern Somalia. Courier Forschungsinstitut Senkenberg 192, 1139.Google Scholar
Benson, R. H., Berdan, J. M., van den Bold, W. A., Hanai, T., Hessland, I., Howe, H. V., Kesling, R. V., Levinson, S. A., Reyment, R. A., Moore, R., Scott, H. W., Shaver, R. H., Sohn, I. G., Stover, L. E., Swain, F. M., Sylvester-Bradley, P. C. & Wainwright, J. 1961. Part Q Arthropoda 3 Crustacea Ostracoda. In Treatise on Invertebrate Paleontology (ed. Moore, R. C.). Colorado: Geological Society of America and University of Kansas Press, 442 pp.Google Scholar
Bhandari, A. 1992. Eocene Ostracoda from the subsurface sections of Garo Hills, Meghalaya and Assam, India. Journal of the Palaeontological Society of India 37, 3783.Google Scholar
Bhandari, A., Singh, H. & Rana, R. S. 2005. A note on occurrence of ostracodes from the Vastan Lignite Mine, Gujarat. Journal of the Palaeontological Society of India 50, 141–6.Google Scholar
Bhatia, S. B. & Bagi, H. 1991. Early Lutetian charophyta from the Shimla Hills, Lesser Himalayas. Bulletin de la Société Botanique de France. Actualités Botaniques 138, 714.Google Scholar
Blake, D. B. 1950. Gosport Eocene Ostracoda from Little Stave Creek, Alabama. Journal of Paleontology 24, 174–84.Google Scholar
Bubikyan, S. A. 1958. Ostracods of the Paleogene deposits of the Erivan Basin. Izvestiya Academii Nuakarmyanskoi, Erevan, SSR (series Geology-Geography) 11, 316.Google Scholar
Cai, H. & Chen, M. 1987. An approach to the distribution and environmental characteristics of microfaunas in surface sediments in the South China Sea. Acta Micropalaeologica Sinica 4, 7385 (in Chinese with English abstract).Google Scholar
Carbonel, P. & Hoibian, T. 1988. The impact of organic matter on ostracods from an equatorial deltaic area, the Mahakam Delta-southeastern Kalimantan. In Evolutionary Biology of Ostracoda: Its Fundamentals and Applications (eds Hanai, T., Ikeya, N. & Shizaki, K. I), pp. 353–66. Tokyo: Kodansha.Google Scholar
Clarke, J. A. & Boyd, C. A. 2015. Methods for the quantitative comparison of molecular estimates of clade age and the fossil record. Systematic Biology 64, 2541.Google Scholar
Dewi, K. T. 1997. Ostracoda from the Java Sea, West of Bawean Island, Indonesia. Marine Geological Institute, Special Publication 4, 178.Google Scholar
Elewa, A. M. T., Luger, P. & Bassiouni, M. A. 2001. Middle Eocene Ostracoda from northern Somalia (Paleoenvironmental appraisal). Revue de Micropaléontologie 44, 279–89.Google Scholar
Elewa, A. M. T., Omar, A. A. & Dakrory, A. M. 1998. Biostratigraphical and paleoenvironmental studies on some Eocene ostracodes and Foraminifers from the Fayoum Depression, Western Desert, Egypt. Egyptian Journal of Geology 42/2, 439–69.Google Scholar
Gemery, L., Cronin, T. M., Briggs, W. M. Jr, Brouwers, E. M., Schornikov, E. I., Stepanova, A., Wood, A. M. & Yasuhara, M. 2017.An Arctic and Subarctic ostracode database: biogeographic and paleoceanographic applications. Hydrobiologia 786, 5995.Google Scholar
Hanai, T. 1959. Studies on the Ostracoda from Japan. IV. family Cytherideidae Sars 1925. Journal of the Faculty of Science, University of Tokyo 11, 291308.Google Scholar
Hanai, T. 1961. Parakrithella Hanai, nom. subst. herein. In Treatise on Invertebrate Paleontology Part Q Arthropoda 3 Crustacea Ostracoda (ed. Moore, R. C.), p. 289. Colorado: Geological Society of America and University of Kansas Press.Google Scholar
Hanai, T. 1970. Studies on the ostracod subfamily Schizocytherinae Mandelstam. Journal of Paleontology 44, 693729.Google Scholar
Horne, D. J., Cohen, A. & Martens, K. 2002. Taxonomy, morphology and biology of Quaternary and living Ostracoda. In The Ostracoda: Applications in Quaternary Research (eds Holmes, J. A. & Chivas, A.), pp. 536. American Geophysical Union, Washington, Geophysical Monograph no. 131.Google Scholar
Hou, Y., Chen, T., Yang, H., Ho, J., Zhou, Q. & Tian, M. 1982. Cretaceous–Quaternary Ostracoda Fauna from Jiangsu. Peking: Geological Publishing House, 386 pp. (in Chinese with English abstract).Google Scholar
Howe, H. V. 1961. Family Schizocytheridae Howe, n. fam. In Treatise on Invertebrate Paleontology Part Q Arthropoda 3 Crustacea Ostracoda (ed. Moore, R. C.), p. 331. Colorado: Geological Society of America and University of Kansas Press.Google Scholar
Howe, H. V. & Garrett, J. B. 1934. Louisiana Sabine Eocene Ostracoda. Geological Bulletin 4, 164.Google Scholar
Hu, C. & Cheng, Y. 1977. Ostracodes from the Late Pleistocene Lungkang Formation near Miaoli, Taiwan. Memoir of the Geological Society of China 2, 191205.Google Scholar
Hu, C. & Tao, H. 2008. Studies on the ostracod fauna of Taiwan and its adjacent seas. National Taiwan Museum Special Publication Series 13, 1910 (in Chinese).Google Scholar
Hu, C. & Yeh, K. 1978. Ostracod faunas from the Pleistocene Liushuang Formation in the Tainan area, Taiwan. Proceedings of the Geological Society of China 21, 151–62.Google Scholar
Ibaraki, M. 1994. Age and paleoenvironment of the Tertiary in northwestern Kyushu on the basis of the pkanktonic foraminifers. Chikyu Monthly 16, 150–3 (in Japanese).Google Scholar
Iijima, A. & Tada, R. 1990. Evolution of Tertiary sedimentary basins of Japan in reference to opening of the Japan Sea. Journal of the Faculty of Science, the University of Tokyo, Section 2, Geology, Mineralogy, Geography, Geophysics 22, 121–71.Google Scholar
Ikeya, N. & Itoh, H. 1991. Recent Ostracoda from the Sendai Bay region, Pacific coast of northeastern Japan. Reports of Faculty of Science, Shizuoka University 25, 93145.Google Scholar
Ikeya, N. & Shiozaki, M. 1993. Characteristics of the inner bay ostracodes around the Japanese islands – the use of ostracodes to reconstruct paleoenvironments. Memoirs of the Geological Society of Japan 39, 1532 (in Japanese with English abstract).Google Scholar
Inoue, E. 1962. El Terciario inferior en la region cerca Misumi-machi, la peninsula de Uto, la prefectura de Kumamoto. Bulletin of the Geological Survey of Japan 13, 6175 (in Japanese with Spanish abstract).Google Scholar
Irizuki, T. 2003. Miocene stratigraphy and microfossils from the eastern Setouchi Province. Shimane Prefecture Chigakkaishi 18, 15 (in Japanese).Google Scholar
Irizuki, T. & Hosoyama, M. 2000. Fossil ostracodes (Crustacea) from the Pleistocene Noma Formation, Aichi Prefecture, central Japan. The Bulletin of Aichi University of Education 49, 915 (in Japanese with English abstract).Google Scholar
Irizuki, T., Ishizaki, K., Takahashi, M. & Usami, M. 1998. Ostracode faunal changes after the mid-Neogene climatic optimum elucidated in the Middle Miocene Kobana Formation, Central Japan. Paleontological Research 2, 3046.Google Scholar
Irizuki, T., Masuda, F., Miyahara, B., Hirotsu, A., Ueda, S. & Yoshikawa, S. 2001. Vertical changes of Holocene ostracodes in bore hole cores from off Kobe, related to the opening of straits and relative sea-level change in western Japan. Quaternary Research 40, 105–20.Google Scholar
Irizuki, T. & Matsubara, T. 1994. Vertical changes of depositional environments of the Lower to Middle Miocene Kadonosawa Formation based on analysis of fossil ostracode faunas. Journal of the Geological Society of Japan 100, 136–49 (in Japanese with English abstract).Google Scholar
Irizuki, T. & Matsubara, T. 1995. Early Middle Miocene ostracodes from the Suenomatsuyama Formation, Ninohe City, Northeast Japan and their paleoenvironmental significance. Transactions and Proceedings of the Palaeontological Society of Japan, New Series 177, 6578.Google Scholar
Irizuki, T., Matsubara, T. & Matsumoto, H. 2005. Middle Pleistocene Ostracoda from the Takatsukayama Member of the Meimi Formation, Hyogo Prefecture, western Japan: significance of the occurrence of Sinocytheridea impressa. Paleontological Research 9, 3754.Google Scholar
Irizuki, T. & Seto, K. 2004. Temporal and spatial variations of paleoenvironments of Paleo-Hamana Bay, central Japan, during the Middle Pleistocene – Analyses of fossil ostracode assemblages, and total organic carbon, total nitrogen and total sulfur contents. The Journal of the Geological Society of Japan 110, 309–24 (in Japanese with English abstract).Google Scholar
Irizuki, T., Yamada, K., Maruyama, T. & Ito, H. 2004. Paleoecology and taxonomy of Early Miocene Ostracoda and paleoenvironments of the eastern Setouchi Province, central Japan. Micropaleontology 50, 105–47.Google Scholar
Ishizaki, K. 1963. Japanese Miocene ostracodes from the Sunakosaka Member of the Yatsuo Formation, east of Kanazawa City, Ishikawa Prefecture. Japanese Journal of the Geology and Geography 34, 1934.Google Scholar
Ishizaki, K. 1966. Miocene and Pliocene Ostracodes from the Sendai area, Japan. Science Reports of the Tohoku University, Second Series (Geology) 37, 131–63.Google Scholar
Ishizaki, K. & Kato, M. 1978. The basin development of the Dilvium Furuya Mud Basin, Shizuoka Prefecture, Japan, based on faunal analysis of fossil ostracodes. In Progress in Micropaleontology (eds Takayanagi, Y. & Saito, T.), pp. 118–43. New York: Micropaleontology Press.Google Scholar
Iwasaki, Y. 1992. Ostracod assemblages from the Holocene deposits of Kumamoto, Kyushu. Bulletin of Faculty of Science, Kumamoto University 13, 112 (in Japanese with English abstract).Google Scholar
Jolivet, L., Tamaki, K. & Fournier, M. 1994. Japan Sea, opening history and mechanism: a synthesis. Journal of Geophysical Research 99, 22237–9.Google Scholar
Kawano, S., Tsujimoto, A., Ugai, H., Irizuki, T. & Nomura, R. 2011. Paleoenvironment and microfossil assemblages in the Pleistocene Ogushi Formation, Kumamoto Prefecture, Southwest Japan. Journal of Fossil Research 44, 110 (in Japanese with English abstract).Google Scholar
Keen, M. C. 1977 a. Cenozoic Ostracoda – North Atlantic. In Stratigraphic Micropaleontology of Atlantic Basin and Borderlands (ed. Swain, F. M.), pp. 467–93. Amsterdam: Elsevier, Developments in Palaeontology and Stratigraphy 6.Google Scholar
Keen, M. C. 1977 b. Ostracod assemblages and the depositional environments of the Headon, Osborne, and Bembridge beds (Upper Eocene) of the Hampshire Basin. Palaeontology 20, 405–45.Google Scholar
Keen, M. C. 1978. The Tertiary – Palaeogene. In A Stratigraphical Index of British Ostracoda (eds Bate, R. H. & Robinson, E.), pp. 384450. Geological Society of London for the Micropalaeontological Spociety, Geological Journal, Special Issue 8.Google Scholar
Keen, M. C. & Racey, A. 1991. Lower Eocene ostracods from the Rusayl Shale Formation of Oman. Journal of Micropalaeontology 10, 227–33.Google Scholar
Keij, A. J. 1957. Eocene and Oligocene Ostracoda from Belgium. Institut Royal des Sciences Naturelles de Belgique, Memoires 136, 1210.Google Scholar
Khosla, S. C. & Nagori, M. L. 2002. Ostracodes from the Inter-trappean beds (Early Paleocene) of the east coast of India. Paleontological Research 6, 191210.Google Scholar
Kingma, J. T. 1948. Contributions to the Knowledge of the Young-Caenozoic Ostracoda from the Malayan Region. Utrecht: Kermink Printers, 119 pp.Google Scholar
Krutak, P. R. 1961. Jackson Eocene Ostracoda from the Cocoa Sand of Alabama. Journal of Paleontology 35, 769–88.Google Scholar
Latreille, P. A. 1802. Historie naturelle, générale et particulière des Crustacés et des Insectes. Histoires des Cypris et des Cytherées 8, 232–54.Google Scholar
Lee, E. & Paik, K. 1992. Late Cenozoic ostracod fauna and paleoenvironments of the marine sedimentary strata in the Cheju Island. Paleontological Society of Korea Special Publications 1, 121–60.Google Scholar
Liu, Z. 1989. Ostracoda. In Cenozoic Paleobiota of the Continental Shelf of the East China Sea (Donghai) (eds Research Party of Marine Geology, Ministry of Geology & Mineral Resources Institute of Geology Chinese Academy of Geological Science), pp. 136163. Beijing: Geological Publishing House (in Chinese with English abstract).Google Scholar
Lord, A. R., Whittaker, J. E. & King, C. 2009. Palaeogene. In Ostracoda in British Stratigraphy (eds Whittaker, J. E. & Hart, M. B.), pp. 373409. London: The Micropalaeontological Society.Google Scholar
Matsubara, T. & Ugai, H. 2006. Paleoecology and taxonomy of Middle Eocene molluscs from the Shiratake Formation on Takeshima Island, Amakusa Islands, southwest Japan. Bulletin of Goshoura Cretaceous Museum 7, 117.Google Scholar
Matsushita, H. 1949. Geology of coal fields in northern Kyushu: Stratigraphical study of the Paleogene in the northern part of Kyushu. Report of Faculty of Science, Kyushu University, Geology 3, 157 (in Japanese with English abstract).Google Scholar
Matsuura, Y., Irizuki, T. & Hayashi, H. 2013. Microfossil assemblages associated with Argonaut fossils from the Middle Miocene Fujina Formation, Shimane Prefecture, southwestern Honshu, Japan. Journal of the Geological Society of Japan 119, 312–20 (in Japanese with English abstract).Google Scholar
McKenzie, K. G. 1967. The distribution of Caenozoic marine Ostracoda from the Gulf of Mexico to Australasia. In Aspects of Tethyan Biogeography (eds Adams, C. G. & Ager, D. V.), pp. 219–38. London: Systematics Association.Google Scholar
Miyake, Y., Tsutsumi, Y., Miyata, K. & Komatsu, T. 2016. LA-ICP-MS zircon U-Pb dating of acidic tuff from the Eocene Akasaki Formation, Amakusa, Kumamoto Prefecture, western Kyushu, Japan: implications for the age of the land mammal fauna. Paleontological Research 20, 302–11.Google Scholar
Mizuno, A. 1962 a. Paleogene and lower Neogene biochronology of western Japan (I. On the Paleogene stratigraphy and molluscan fauna in the vicinity of Nishisonogi Peninsula, northwestern Kyushu). Journal of the Geological Society of Japan 68, 640–8 (in Japanese with English abstract).Google Scholar
Mizuno, A. 1962 b. Paleogene and lower Neogene biochronology of western Japan (II. On the correlation and biochronologic division of the Paleogene strata in the vicinity of Nishisonogi Peninsula, northwestern Kyushu). Journal of the Geological Society of Japan 68, 687–93 (in Japanese with English abstract).Google Scholar
Mizuno, A. 1963. Paleogene and lower Neogene biochronology of western Japan (III. Stratigraphic and geographic distribution of molluscan faunas in west Japan). Journal of the Geological Society of Japan 69, 3850 (in Japanese with English abstract).Google Scholar
Mizuno, A. 1964. Paleogene and early Neogene molluscan faunae in west Japan. Report of Geological Survey of Japan 204, 172.Google Scholar
Müller, G. W. 1894. Die Ostracoden des Golfes von Neapel und angrenzenden Meeresabschnitte. In Fauna und Flora des Golfes von Neapel. Friedlaender, R. & Berlin, Sohn, Monographie 21, 404 pp.Google Scholar
Nagao, T. 1926 a. Stratigraphy of the Palaeogene formations of Kyushu (Part 1). Journal of Geography (Chigaku-Zassi) 38, 115–30 (in Japanese).Google Scholar
Nagao, T. 1926 b. Stratigraphy of the Palaeogene formations of Kyushu (Part 2). Journal of Geography (Chigaku-Zassi) 38, 263–9 (in Japanese).Google Scholar
Nagao, T. 1926 c. Stratigraphy of the Palaeogene formations of Kyushu (Part 3). Journal of Geography (Chigaku-Zassi) 38, 317–23 (in Japanese).Google Scholar
Nagao, T. 1926 d. Stratigraphy of the Palaeogene formations of Kyushu (Part 4). Journal of Geography (Chigaku-Zassi) 38, 369–73 (in Japanese).Google Scholar
Nagao, T. 1926 e. Stratigraphy of the Palaeogene formations of Kyushu (Part 5). Journal of Geography (Chigaku-Zassi) 38, 457–61 (in Japanese).Google Scholar
Nagao, T. 1927. The Paleogene stratigraphy of Kyushu. Journal of Geography (Chigaku-Zassi) 39, 8690 (in Japanese).Google Scholar
Nagao, T. 1928 a. The Paleogene stratigraphy of Kyushu. Journal of Geography (Chigaku-Zassi) 40, 193214 (in Japanese).Google Scholar
Nagao, T. 1928 b. The Paleogene stratigraphy of Kyushu. Journal of Geography (Chigaku-Zassi) 40, 278–88 (in Japanese).Google Scholar
Nakao, Y., Tanaka, G. & Yamada, S. 2001. Pleistocene and living marine Ostracoda in Shizuoka district, Japan. In 14th International Symposium on Ostracoda Guidebook of Excursions (ed. Ikeya, N.), pp. 127–47. Shizuoka University Press, Shizuoka, Organizing Committee of ISO 2001.Google Scholar
Okada, H. 1992. Calcareous nannofossils and biostratigraphy of the Paleogene sequences of the northern Kyushu, Japan. Journal of the Geological Society of Japan 98, 509–28.Google Scholar
Otofuji, Y., Matsuda, T. & Nohda, S. 1985. Opening mode of the Japan Sea inferred from the paleomagnetism of the Japan Arc. Nature 317, 603–4.Google Scholar
Ozsvart, P. 1999. Middle Eocene foraminifer, mollusk and ostracod fauna from the Csordakut Basin (Gerecse Mountains, Hungary): palaeoenvironments recorded in a transgressive sequence. Annals Universitatis Scientiarum Budapestinensis, Sectio Geologica 32, 73135.Google Scholar
Pooser, W. K. 1965. Biostratigraphy of Cenozoic Ostracoda from South Carolina. Paleontological Institute, University of Kansas, Paleontological Contributions, Arthropoda 8, 80 pp.Google Scholar
Şafak, Ü., Ocakoğ Lu, F. & Açikalm, S. 2015. Ostracoda assemblage and the environmental characteristics of the Eocene succession of the Central Sakarya Region. Micropaleontology 61, 4968.Google Scholar
Sakai, H. 1993. Tectonics and sedimentation of the Tertiary sedimentary basins in the northern Kyushu. Memoir of the Geological Society of Japan 42, 183201 (in Japanese with English abstract).Google Scholar
Sars, G. O. 1866. Oversigt af Norges marine Ostracoder. Forhandlinger Videnskabs-Selskabet i Christiania. Oslo: Norske Videnskabs Akademi, 130 pp. (in Norwegian).Google Scholar
Sasaki, Y., Irizuki, T., Abe, K., Uchida, J. & Fujiwara, O. 2007. Fossil ostracode assemblages from Holocene Tsunami and normal bay deposits along the Tomoe River, Tateyama, Boso Peninsula, central Japan. Quaternary Research 46, 517–32 (in Japanese with English abstract).Google Scholar
Sawada, Y., Mishiro, Y., Imaoka, T., Yoshida, K., Inada, R., Hisai, K., Kondo, H. & Hyodo, M. 2013. K-Ar ages and paleomagnetism of the Miocene in the Izumo Basin, Shimane Prefecture. Journal of the Geological Society of Japan 119, 267–84 (in Japanese with English abstract).Google Scholar
Scotese, C. R. 2013 a. Map Folio 10, Late Eocene, Priabonian, 35.6 Ma. PALEOMAP PaleoAtlas for ArcGIS, volume 1, Cenozoic. PALEOMAP Project, Evanston, IL.Google Scholar
Scotese, C. R. 2013 b. Map Folio 11, late Middle Eocene, Bartonian, 38.8 Ma. PALEOMAP PaleoAtlas for ArcGIS, volume 1, Cenozoic. PALEOMAP Project, Evanston, IL.Google Scholar
Scotese, C. R. 2013 c. Map Folio 13, Early Eocene, Ypresian, 52.2 Ma. PALEOMAP PaleoAtlas for ArcGIS, volume 1, Cenozoic. PALEOMAP Project, Evanston, IL.Google Scholar
Shahin, A., El Halaby, O. & El Baz, S. 2008. Middle Eocene ostracodes of the Qattamiya area, northwest Eastern Desert, Egypt: Systematics, biostratigraphy and paleobiogeography. Revue de Paléobiologie, Genève 27, 123–57.Google Scholar
Siddiqui, Q. A. 2000. Some species of the genus Neocyprideis in early Tertiary of Pakistan. Journal of Micropalaeontology 19, 17.Google Scholar
Stephenson, M. B. 1946. Weches Eocene Ostracoda from Smithville, Texas. Journal of Paleontology 20, 297344.Google Scholar
Swain, F. M. 1974. Some Upper Miocene and Pliocene (?) Ostracoda of Atlantic Coastal Region for use in Hydrogeologic Studies. US Geological Survey, Washington, Professional Paper 821, 1–50, 13 pls.Google Scholar
Sylvester-Bradley, P. C. 1947. Some ostracod genotypes. Annals and Magazine of Natural History, Series 11 13, 192–9.Google Scholar
Tabuki, R. 2001. Plio-Pleistocene and Recent subtropical Ostracoda in Okinawa. In 14th International Symposium on Ostracoda Guidebook of Excursions (ed. Ikeya, N.), pp. 2144. Shizuoka: The Organizing Committee of ISO 2001.Google Scholar
Takai, Y., Bojo, T. & Harada, T. 1997. Explanatory Text of the Geology of the Amakusa Coal Field. Geology and Coal Deposits in the Amakusa Coal Field, Kumamoto Prefecture, Japan. Tsukuba: Geological Survey of Japan, 77 pp. (in Japanese with English abstract).Google Scholar
Takai, Y. & Satoh, H. 1982. Geology of the Onikizaki and Ushibuka District (including a part of the Akune District). Tsukuba: Geological Survey of Japan, 87 pp. (in Japanese with English abstract).Google Scholar
Tanaka, G. 2003. Middle Miocene ostracods from the Omori Formation, Izumo City, Southwest Japan: Its implications for paleoenvironment of the Proto-Japan Sea. Earth Science (Chikyu-Kagaku) 57, 111–27.Google Scholar
Tanaka, G. 2016. Redescription of two krithid species (Crustacea, Ostracoda) from the Sea of Japan, with a comment on the taxonomic characters of Krithidae. Paleontological Research 20, 3147.Google Scholar
Tanaka, G., Itami, M., Kurosawa, S., Yoshioka, A., Yokota, M., Arai, R., Idehara, Y. & Hayashi, H. 2013. The depositional environment of the singular Middle Miocene strata from southwestern Tomioka City, Gunma Prefecture, central Japan, from the view point of fossil ostracod assemblage. Journal of the Geological Society of Japan 119, 1724 (in Japanese with English abstract).Google Scholar
Tanaka, G., Komatsu, T. & Phong, N. D. 2009. Recent ostracod assemblages from the northeastern coast of Vietnam and the biogeographical significance of the euryhaline species. Micropaleontology 55, 365–82.Google Scholar
Tanaka, G., Kuroda, S. & Ikeya, N. 2011. Taxonomy and microhabitats of the genus Spinileberis (Ostracoda, Crustacea) from Japan. Paleontological Research 15, 213–32.Google Scholar
Tanaka, G. & Nomura, R. 2009. Middle Miocene ostracods from the Furue Formation, Shimane Prefecture, Southwest Japan. Journal of the Geological Society of Japan 115, 261–5 (in Japanese with English abstract).Google Scholar
Tanaka, G., Nomura, S. & Hasegawa, Y. 2012. Miocene ostracods from the Midorimachi Formation, Ota City, Gunma Prefecture, central Japan. Bulletin of Gunma Museum of Natural History 16, 3140.Google Scholar
Tanaka, G., Seto, K., Mukuda, T. & Nakano, Y. 2002. Middle Miocene ostracods from the Fujina Formation, Southwest Japan and their paleoenvironmental significance. Paleontological Research 6, 122.Google Scholar
Tanaka, G., Seto, K. & Takayasu, K. 1998. The relationship between environments and ostracode assemblages from Miho Bay to Lake Shinji. LAGUNA 5, 8191 (in Japanese with English abstract).Google Scholar
Tanaka, G., Tsukawaki, S. & Ooji, A. 2004. Preliminary report on Ostracodes from the Miocene Sunagozaka Formation, southern part of Kanazawa City, Ishikawa Prefecture, central Japan. Bulletin of the Japan Sea Research Institute 35, 5363 (in Japanese with English abstract).Google Scholar
Tanaka, Y., Kondo, Y. & Tashiro, M. 1997. Paleoecology of molluscan associations of Paleogene Senganzan Formations, Miroku Group in Amakusa-kamijima Island, Kumamoto Prefecture. Abstracts of Annual Meeting of the Geological Society of Japan 414 (in Japanese), Fukuoka, October 1997.Google Scholar
Toyohara, F. & Hase, Y. 1991. Surface geological map, Misumi-Kyoragi-Minamata. Available at http://nrb-www.mlit.go.jp/kokjo/tochimizu/F3/ZOOMA/4312/index.html (accessed 29 July 2017).Google Scholar
Van den Bold, W. A. 1957. Ostracoda from the Paleocene of Trinidad. Micropaleontology 3, 118.Google Scholar
Wan, X., Jiang, T., Zhang, Y., Xi, D. & Li, G. 2014. Palaeogene marine stratigraphy in China. Lethaia 47, 297308.Google Scholar
Wang, P., et al. 1985. Marine Micropaleontology of China. Beijing: China Ocean Press, 370 pp.Google Scholar
Wang, P. & Zhao, Q. 1991. Paleobiogeography of Ostracoda and Foraminifera in the China sea area. Acta Oceanologica Sinica 10, 93105.Google Scholar
Wang, Q. & Zhang, L. 1987. Holocene ostracod fauna and paleoenvironment in the sea region around Hong Kong. Acta Oceanologica Sinica 6, 281–8 (in Chinese with English abstract).Google Scholar
Whatley, R. 1983. The application of Ostracoda to palaeoenvironmental analysis. In Applications of Ostracoda (ed. Maddocks, R. F.), pp. 5177. Houston: University of Houston Geosciences.Google Scholar
Whatley, R. 1988. Population structure of ostracods: some general principles for the recognition of palaeoenvironments. In Ostracoda in the Earth Sciences (eds De Decker, P., Colin, J. P. & Peypouquet, J. P.), pp. 245–56. Amsterdam: Elsevier.Google Scholar
Williams, M., Perrier, V., Bennett, C., Hearing, T., Stocker, C. & Harvey, T. 2015. Ostracods: the ultimate survivors. Geology Today 31, 193200.Google Scholar
Yajima, M. 1978. Quaternary Ostracoda from Kisarazu near Tokyo. Transactions and Proceedings of the Palaeontological Society of Japan, New Series 112, 371409.Google Scholar
Yajima, M. 1982. Late Pleistocene Ostracoda from the Boso Peninsula, central Japan. The University Museum, University of Tokyo Bulletin 20, 141227.Google Scholar
Yajima, M. 1988. Preliminary notes on the Japanese Miocene Ostracoda. In Evolutionary Biology of Ostracoda: Its Fundamentals and Applications (eds Hanai, T., Ikeya, N. & Shizaki, K. I.), pp. 1073–85. Tokyo: Kodansha.Google Scholar
Yajima, M. 1992. Early Miocene Ostracoda from Mizunami, central Japan. Bulletin of the Mizunami Fossil Museum 19, 247–67.Google Scholar
Yamaguchi, T. 2004. Oligocene ostracode assemblages from the Itanoura Formation, Nishisonogi Group, Nagasaki Prefecture, southwest Japan. Paleontological Research 8, 5370.Google Scholar
Yamaguchi, T. 2006. Eocene ostracodes from the Iojima Group, Nagasaki Prefecture, southwestern Japan. Journal of Paleontology 80, 902–18.Google Scholar
Yamaguchi, T. & Goedert, J. L. 2009. Early Eocene marine ostracods from the Crescent Formation, southwestern Washington State, USA. Journal of Micropalaeontology 28, 117–29.Google Scholar
Yamaguchi, T. & Hayashi, H. 2001. Late Miocene ostracodes from the Kubota Formation, Higashi-Tanagura Group, Northeast Japan, and their implications for bottom environments. Paleontological Research 5, 241–57.Google Scholar
Yamaguchi, T. & Kamiya, T. 2007. Oligocene-Miocene ostracode assemblages with the genus Palmoconcha from Japan. Journal of Paleontology 81, 632–42.Google Scholar
Yamaguchi, T. & Kamiya, T. 2009. Eocene ostracodes from Hahajima Islands of the Ogasawara (Bonin) Islands, Northwestern Pacific, and their paleobiogeographic significance in the West Pacific. Journal of Paleontology 83, 219–37.Google Scholar
Yamaguchi, T. & Kurita, H. 2008. Eocene ostracode assemblages with Robertsonites from Hokkaido and their implications for the paleobiogeography of Northwestern Pacific. Bulletin of the Geological Survey of Japan 59, 369–84.Google Scholar
Yamaguchi, T., Matsubara, T. & Kamiya, T. 2005. Eocene ostracods from the Iwaya Formation on Awajishima Island, southwestern Japan. Paleontological Research 9, 305–18.Google Scholar
Yamaguchi, T., Nagao, R. & Kamiya, T. 2006. Paleogene ostracodes from the Kishima Formation, Kishima Group, southwestern Japan. Bulletin of the Mizunami Fossil Museum 33, 87101.Google Scholar
Yamaguchi, T., Suzuki, H., Soe, A.-N., Htike, T., Nomura, R. & Takai, M. 2015. A new late Eocene Bicornucythere species (Ostracoda, Crustacea). Zootaxa 3919, 306–26.Google Scholar
Yamaguchi, T., Tanaka, Y. & Nishi, H. 2008. Calcareous nannofossils and planktic foraminiferal biostratigraphy of the Paleogene Iojima Group, Nagasaki Prefecture, southwest Japan. Paleontological Research 12, 223–36.Google Scholar
Yanai, S., Aoki, K. & Akahori, Y. 2010. Opening of Japan Sea and major tectonic lines of Japan: MTL, TTL and Fossa Magna. Journal of Geography (Chigaku Zasshi) 119, 1079–124 (in Japanese with English abstract).Google Scholar
Yang, H. 1995. Paijenborchella (Eopaijenborchella) simples Yang sp. nov. In Late Cretaceous–Early Tertiary Ostracoda Fauna from Western Tarim Basin, S. Xinjiang, China (eds Yang, H., Jiang, X. & Lin, S.), pp. 113–4. Beijing: Science Press (in Chinese).Google Scholar
Yang, H. & Chen, T. 1982. Neomonoceratina bullata Yang et Chen sp. nov. In Cretaceous–Quaternary Ostracoda Fauna from Jiangsu (eds Hou, Y., Chen, T., Yang, H., Ho, J., Zhou, Q. & Tian, M.), pp. 222–3. Peking: Geological Publishing House (in Chinese).Google Scholar
Yang, H., Chen, D. & Wang, J. 1990. Eocene Ostracoda from the southwestern continental shelf of the East China Sea. Acta Micropalaeontologica Sinica 7, 367–38 (in Chinese with English abstract).Google Scholar
Yang, H., Jiang, X. & Lin, S. 1995. Late Cretaceous–Early Tertiary Ostracoda Fauna from Western Tarim Basin, S. Xinjiang, China. Beijing: Science Press, 62 pp.Google Scholar
Yasuda, N., Takayanagi, Y. & Hasegawa, S. 1985. On the tetraphenylborate method for hard-rock maceration. Fossils (Kaseki) 39, 1727 (in Japanese).Google Scholar
Yun, H., Paik, K., Chang, S. & Yi, S. 1990. Microfossil assemblages from the Bomun area. Journal of Paleontological Society of Korea 6, 163.Google Scholar
Zachos, J. C., Dickens, G. D. & Zeebe, R. E. 2008. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451, 279–83.Google Scholar
Zhao, Q. 1984. Recent Ostracoda from the coast zone of the East China Sea and the Yellow Sea. Marine Geology & Quaternary Geology 4, 4557 (in Chinese with English abstract).Google Scholar
Zhao, Q. 1987. A study of the distribution of recent ostracod faunas from coastal areas of the East China and Yellow seas. Acta Oceanologica Sinica 6, 413–20.Google Scholar
Zhao, Q. & Wang, P. 1988 a. Distribution of modern Ostracoda in the Shelf off China. In Evolutionary Biology of Ostracoda: Its Fundamentals and Applications (eds Hanai, T., Ikeya, N. & Shizaki, K. I.), pp. 805–21. Tokyo: Kodansha.Google Scholar
Zhao, Q. & Wang, P. 1988 b. Modern Ostracoda in sediments of shelf sea off China: Quantitative and qualitative distributions. Oceanologia et Limnologia Sinica 7, 562–77 (in Chinese with English abstract).Google Scholar
Zhao, Q. & Whatley, R. 1989. Recent podocopid Ostracoda of the Sedili River and Jason Bay, southeastern Malay Peninsula. Micropaleontology 35, 168–87.Google Scholar
Zhao, Q. & Whatley, R. 1992. A revision of the genus Sanyuania Zhao and Han, 1980 (Ostracoda, Crustacea) with the description of new species from the late Cainozoic of China. Journal of Micropalaeontology 11, 151–8.Google Scholar
Zheng, S. 1987. Quaternary Ostracoda fauna from coastal deposits along the coast of Fujian. Memoirs of Nanjing Institute of Geology & Palaeontology, Academia Sinica 23, 190207 (in Chinese with English abstract).Google Scholar
Zheng, Z. et al. 1994. A Comprehensive Ecological and Paraecological Study on the Sedimentary Organisms in the Northern and Eastern Area of the South China Sea. Hubei: Hubei Science Technology Press, 175 pp. (in Chinese with English abstract).Google Scholar
Zhou, B., Zhao, Q., Huang, W. & Gao, J. 1996. A restudy of ostracode assemblages in the surface sediments of the Huanghai Sea. Acta Oceanologica Sinica 15, 209–29.Google Scholar