Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-23T17:40:33.569Z Has data issue: false hasContentIssue false

Excess argon in amphiboles linked to greenschist facies alteration in the Kamila Amphibolite Belt, Kohistan island arc system, northern Pakistan: insights from 40Ar/39Ar step-heating and acid leaching experiments

Published online by Cambridge University Press:  01 May 2009

Jo Anne Wartho
Affiliation:
Department of Earth Sciences, University of Leeds, Leeds LS2 9JT, UK
David C. Rex
Affiliation:
Department of Earth Sciences, University of Leeds, Leeds LS2 9JT, UK
Philip G. Guise
Affiliation:
Department of Earth Sciences, University of Leeds, Leeds LS2 9JT, UK

Abstract

A mineralogical and 4OAr/39Ar study of 13 amphibole samples in the Kamila Amphibolite Belt and Kamila Shear Zone in northern Pakistan has found a correlation between the degree of greenschist facies alteration and quantity of excess 40Ar. Additionally, there is a north–south divide with amphibole samples from the northern region showing larger degrees of gree schist facies alteration, brittle deformation, and excess 40Ar incorporation compared to the predominantly plastically deformed, less altered, amphibole samples from the Kamila Shear Zone in the south. Acid leaching of two amphiboles from the Kamila Amphibolite Belt indicates that a large proportion of the excess 40Ar is correlated with later greenschist facies alteration hases, and can be easily removed by acid etching, thus revealing acceptable regional 40Ar/39Ar plateau ages.

Type
Articles
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bard, J. P. 1983. Metamorphism of an obducted island arc: example of the Kohistan sequence (Pakistan) in the Himalayan collided range. Earth and Planetary Science Letters 65, 133–44.CrossRefGoogle Scholar
Bard, J. P., Maluski, H., Matte, P., & Proust, F. 1980. The Kohistan sequence: Crust and mantle of an obducted island arc. Special Issue Geological Bulletin, University of Pes/war 13,8793.Google Scholar
Berger, G. W. 1975. 40Ar/39Ar step heating of thermally overprinted biotite, hornblende and potassium feldspar from Eldora, Colorado. Earth and Planetary Science Letters 26, 387408.CrossRefGoogle Scholar
Berger, G. W., & York, D. 1981. Geothermometry from 40Ar/39Ar dating experiments. Geochimica et Cosmochimica Acta 45,795811.CrossRefGoogle Scholar
Blanckenburg, F. V., & Villa, I. M. 1988. Argon retentivity and argon excess in amphiboles from the grabenschists of the Western Tauern Window, Eastern Alps. Contributions to Mineralogy and Petrology 100, 111.CrossRefGoogle Scholar
Brewer, M. S. 1969. Excess radiogenic argon in metamorphic micas from the Eastern Alps, Austria. Earth and Planetary Science Letters 6, 321–31.CrossRefGoogle Scholar
Chamberlain, C. P., Zeitler, P. K., & Jan, M. Q. 1989. The dynamics of the suture between the Kohistan island arc and the Indian Plate in the Himalaya of Pakistan. Journal of Metamorphic Geology 7, 135–49.CrossRefGoogle Scholar
Claesson, S., & Roddick, J. C. 1983. 40Ar/39Ar data on the age and metamorphism of the Otlfjallet diorites, Siirv Nappe, Swedish Caledonides. Lithos 16, 6173.CrossRefGoogle Scholar
Coward, M. P., Butler, R. W. H., Khan, M. A., & Knipe, R. J. 1987. The tectonic history of Kohistan and its implications for Himalayan structure. Journal of the Geological Society, London 144,377–91.CrossRefGoogle Scholar
Coward, M. P., Jan, M. Q., Rex, D. C, Tarney, J., Thirlwall, M., & Windley, B. F. 1982a. Structural evolution of a crustal section in the Western Himalayas. Nature 295,22–4.CrossRefGoogle Scholar
Coward, M. P., Jan, M. Q., Rex, D. C, Tarney, J., Thirlwall, M., & Windley, B. F. 1982b. Geo-tectonic framework of the Himalayan of N. Pakistan. Journal of the Geological Society, London 139, 299308.CrossRefGoogle Scholar
Coward, M. P., Windley, B. F, Broughton, R., Luff, I. W., Petterson, M., Pudsey, C., Rex, D. C., & Khan, M. A. 1986. Collision tectonics in the NW Himalayas. In Collision Tectonics (eds Coward, M. and Ries, A. C.), pp. 203–19. London: Geological Society Special Publication no. 19.Google Scholar
Dallmeyer, R. D., & Rivers, T. 1983. Recognition of extraneous argon components through incremental-release 40Ar/39Ar analysis of biotite and hornblende across the Grenvillian metamorphic gradient in south -western Labrador. Geochimica et Cosmochimica Acta 47,413–28.CrossRefGoogle Scholar
Dalrymple, G. B., & Lanphere, M. A. 1969. Potassium-Argon Dating, Principle Techniques and Applications to Geochronology. San Francisco: Freeman and Co., 258 pp.Google Scholar
Dalrymple, G. B., & Lanphere, M. A. 1974. 40Ar/39Ar age spectra of some undisturbed terrestrial samples. Geochimica et Cosmochimica Acta 38, 715–38.CrossRefGoogle Scholar
Damon, P. E., & Kulp, J. L. 1958. Excess helium and argon in beryl and other minerals. American Mineralogist 43, 433–59.Google Scholar
Deer, W. A., Howie, R. A., & Zussman, J. 1962. Rock-Forming Minerals: Volume 5, Non-Silicates. London: Longman, 372 pp.Google Scholar
Donaldson, C. H., Presnall, A. J., Irving, A. J., Stolper, E. M, Kesson, S. E., Usselman, T. M., Merrill, R. B., & Walker, D. 1981. Basaltic Volcanism of the Terrestrial Planets. New York: Pergamon Press.Google Scholar
Dooley, R. E., & Wampler, J. M. 1978. Low temperature release of excess 40Ar from Georgia dolerites. US Geological Survey Open-File Report 78 –701, 94–6.Google Scholar
Fleck, R. J., Sutter, J. F., & Elliot, D. H. 1977. Interpretation of discordant 40Ar/39Ar age spectra of Mesozoic tholeiites from Antarctica. Geochimica et Cosmochimica Acta 41, 1532.CrossRefGoogle Scholar
Gansser, A. 1964. The geology of the Himalayas. London: Wiley Interscience, 289 pp.Google Scholar
Giletti, B. J. 1971. Discordant isotopic ages and excess argon in biotites. Earth and Planetary Science Letters 10, 157–64.CrossRefGoogle Scholar
Harrison, T. M., & Mcdougall, I. 1980. Investigations of an intrusive contact, northwest Nelson, New Zealand — II. Diffusion of radiogenic and excess 40Ar in hornblende revealed by 40Ar/39Ar age spectrum analysis. Geochimica et Cosmochimica Acta 44, 2005–20.CrossRefGoogle Scholar
Harrison, T. M., & Mcdougall, I. 1981. Excess 40Ar in metamorphic rocks from Broken Hill, New South Wales: implications for 40Ar/39Ar age spectra and the thermal history of the region. Earth and Planetary Science Letters 55, 123–49.CrossRefGoogle Scholar
Hebeda, E. H., Boelrijk, N. A. I. M., Priem, H. N. A., Verdurmen, E. A., & Verschure, R. H. 1973. Excess Radiogenic Argon in the Precambrian Avanavero Dolerite in Western Suriname (South America). Earth and Planetary Science Letters 20, 189200.CrossRefGoogle Scholar
Hess, J. C, Lippolt, H. J., & Wirth, R. 1987. Interpretation of 40Ar/39Ar spectra of biotites: evidence from hydrothermal degassing experiments and TEM studies. Isotope Geosciences 66, 137–49.CrossRefGoogle Scholar
Jan, M. Q. 1988. Geochemistry of amphibolites from the southern part of the Kohistan arc N. Pakistan. Mineralogical Magazine 52, 147–59.CrossRefGoogle Scholar
Jan, M. Q., & Howie, R. A. 1980. Ortho- and clinopyroxenes from the pyroxene granulites of Swat Kohistan, northern Pakistan. Mineralogical Magazine 43, 715–26.Google Scholar
Jan, M. Q., & Howie, R. A. 1981. The mineralogy and geochemistry of the metamorphosed basic and ultrabasic rocks of the Jijal complex, Kohistan, NW Pakistan. Journal of Petrology 22, 85126.CrossRefGoogle Scholar
Kaneoka, I. 1974. Investigations of excess argon in ultramafic rocks from the Kola Peninsula by the 40Ar/39Ar method. Earth and Planetary Science Letters 22, 145–56.CrossRefGoogle Scholar
Landoll, J. D., Foland, K. A., & Henderson, C. M. B. 1989. Excess argon in amphiboles from fluid interaction and short intrusion interval at the epizonal Marangudzi Complex, Zimbabwe. Journal of Geophysical Research 94(B4), 4053–69.CrossRefGoogle Scholar
Lanphere, M. A., & Dalrymple, G. B. 1971. A test of the 40Ar/39Ar age spectrum technique on some terrestrial materials. Earth and Planetary Science Letters 12, 359–72.CrossRefGoogle Scholar
Lanphere, M. A., & Dalrymple, G. B. 1976. Identification of excess 40Ar by the 40Ar/39Ar technique. Earth and Planetary Science Letters 32, 141–8.CrossRefGoogle Scholar
Lanphere, M. A., & Dalrymple, G. B. 1978. The use of 40Ar/39Ar data in evaluation of disturbed K-Ar systems. Geological Survey Open-File Report 78 –701, 241–3.Google Scholar
Lee, J. K. W. 1993. The argon release mechanisms of hornblende in vacuo. Chemical Geology (Isotope Geoscience Section) 106, 133–70.Google Scholar
Lo, C-H., & Onstott, T. C. 1989. 39Ar recoil artifacts in chloritized biotite. Geochimica et Cosmochimica Acta 53, 26972711.Google Scholar
Maluski, H., Monie, P., Kienast, J. R., & Rahmani, A. 1990. Location of extraneous argon in granulite-facies minerals: a paired microprobe-laser probe 40Ar/39Ar analysis. Chemical Geology (Isotope Geosciences Section) 80, 193218.CrossRefGoogle Scholar
Onstott, T. C, Hall, C. M., & York, D. 1989. 40Ar/39Arthermochronology of the Imataca Complex, Venezuela. Precambrian Research 42, 255–91.CrossRefGoogle Scholar
Pankhurst, R. J., Moorbath, S., Rex, D. C., & Turner, G. 1973. Mineral age patterns in ca. 3700 my old rocks from West Greenland. Earth and Planetary Science Letters 20, 157–70.CrossRefGoogle Scholar
Patriat, P., & Achache, J. 1984. India-Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates. Nature 311 (5987), 615–20.CrossRefGoogle Scholar
Petterson, M. G., & Windley, B. F. 1985. Rb-Sr dating of the Kohistan arc-batholith in the Trans-Himalaya of N. Pakistan and tectonic implications. Earth and Planetary Science Letters 74, 5475.a8.htmlCrossRefGoogle Scholar
Pudsey, C. T., Coward, M. P., Luff, I. W., Shackleton, R. M., Windley, B. F., & Jan, M. Q. 1986. The collision zone between the Kohistan arc and the Asian Plate in NW Pakistan. Transactions of the Royal Society of Edinburgh, Earth Science 76, 463–79.CrossRefGoogle Scholar
Rama, S. N. I., Hart, S. R., & Roedder, E. 1965. Excess radiogenic argon in fluid inclusions. Journal of Geophysical Research 70, 509–11.CrossRefGoogle Scholar
Rex, D. C, Guise, P. G., & Wartho, J -A. 1993. Disturbed 40Ar/39Ar spectra from hornblendes: thermal loss or contamination? Chemical Geology (Isotope Geosciences Section) 103, 271–81.Google Scholar
Roddick, J. C, Cliff, R. A., & Rex, D. C. 1980. Isotopic evolution of excess argon in some Alpine biotites — a Excess argon in amphiboles 607 analysis. Earth and Planetary Science Letters 48, 185208.CrossRefGoogle Scholar
Ruffet, G., Feraud, G., & Amouric, M. 1991. Comparison of 40Ar—39Ar conventional and laser dating of biotites from the North Tr6gor Batholith. Geochimica et Cosmochimica Acta 55, 1675–88.CrossRefGoogle Scholar
Schwartzman, D. W., & Giletti, B. J. 1977. Argon diffusion and absorption studies of pyroxenes from the Stillwater Complex, Montana. Contributions to Mineralogy and Petrology 60, 143–59.CrossRefGoogle Scholar
Sisson, V. B., & Onstott, T. C. 1986. Dating blueschist metamorphism: a combined 40Ar/39Ar and electron microprobe approach. Geochimica et Cosmochimica Acta 50, 2111–17.CrossRefGoogle Scholar
Tahirkheli, R. A. K., Mattauer, M, Proust, F., & Tapponnier, P. 1977. Some new data on the India-Eurasia convergence in the Pakistani Himalayas. Centre National de Recherches Scientifiques, France, Colloqium International 268, 209–20.Google Scholar
Tahirkheli, R. A. K., Mattauer, M., Proust, F., & Tapponnier, P. 1979. The India Eurasia suture zone in northern Pakistan: Synthesis and interpretation of recent data at plate scale. In Geodynamics of Pakistan (eds Farah, A. and Dejong, K. A.), pp. 125–30. Quetta: Geological Survey of Pakistan.Google Scholar
Treloar, P. J., Rex, D. C, Coward, M. P., Petterson, M. G., Windley, B. F., Jan, M. Q., & Luff, I. W. 1989. K—Ar and Ar—Ar geochronology of the Himalayan collision in NW Pakistan: constraints on the timing of suturing, deformation, metamorphism and uplift. Tectonics 8, 881909.CrossRefGoogle Scholar
Treloar, P. J., Brodie, K. H., Coward, M. P., Jan, M. Q., Khan, M. A., Knipe, R. J., Rex, D. C., & Williams, M. P. 1990. The evolution of the Kamila shear zone, Kohistan, Pakistan. In Exposed cross-sections of the continental crust (eds Salisbury, M. H., and Fountain, D. M.), pp. 175214. NATO, Series C, no. 317.CrossRefGoogle Scholar
Wartho, J-A. 1995. Photo-emission electron microscopy (PEEM) heating investigations of a natural amphibole sample. Mineralogical Magazine 59, 121–7.CrossRefGoogle Scholar
Wartho, J-A., Dodson, M. H., Rbx, D. C., & Guise, P. G. 1991. Mechanisms of argon release from Himalayan metamorphic hornblendes. American Mineralogist 76, 1446–8.Google Scholar
Wilson, M. R. 1972. Excess radiogenic argon in metamorphic amphiboles and biotites from the Sulitjelma region, Central Norwegian Caledonides. Earth and Planetary Science Letters 14, 403–12.CrossRefGoogle Scholar
Zeitler, P. K., & Fitz, Gerald J. D. 1986. Saddle-shaped 40Ar/39Ar age spectra from young, micro-structurally complex potassium feldspars. Geochimica et Cosmochimica Acta 50, 1185–99.CrossRefGoogle Scholar