Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-23T13:10:11.828Z Has data issue: false hasContentIssue false

Emplacement conditions and exhumation of the Varvarco Tonalite and associated plutons from the Cordillera del Viento, Southern Central Andes

Published online by Cambridge University Press:  14 March 2022

Omar Sebastian Assis*
Affiliation:
Instituto de Geociências, Universidade de Brasília, Laboratório de Geocronologia e geoquímica isotópica, Brasília, 70910 900, DF, Brasil
Claudia Beatriz Zaffarana
Affiliation:
Universidad Nacional de Río Negro, Sede Alto Valle-Valle Medio e Instituto de Investigación en Paleobiología y Geología (IIPG-CONICET), General Roca, Río Negro, Argentina
Darío Orts
Affiliation:
Universidad Nacional de Río Negro, Sede Alto Valle-Valle Medio e Instituto de Investigación en Paleobiología y Geología (IIPG-CONICET), General Roca, Río Negro, Argentina
Carla Puigdomenech
Affiliation:
Instituto de Geociências Básicas, Aplicadas y Ambientales de Buenos Aires (IGeBA); CONICET; Universidad de Buenos Aires
Víctor Ruiz González
Affiliation:
Instituto de Geociências Básicas, Aplicadas y Ambientales de Buenos Aires (IGeBA); CONICET; Universidad de Buenos Aires
Gloria Gallastegui
Affiliation:
Instituto Geológico y Minero de España (IGME, CSIC), España
Natalia Hauser
Affiliation:
Instituto de Geociências, Universidade de Brasília, Laboratório de Geocronologia e geoquímica isotópica, Brasília, 70910 900, DF, Brasil
Ekaterina S. Kiseeva
Affiliation:
School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, North Mall, Cork, Ireland
José Francisco Molina
Affiliation:
Departamento de Mineralogía y Petrología, Universidad de Granada, España
Sebastián Pernich
Affiliation:
Universidad Nacional de Río Negro, Sede Alto Valle-Valle Medio e Instituto de Investigación en Paleobiología y Geología (IIPG-CONICET), General Roca, Río Negro, Argentina
*
Author for correspondence: Omar Sebastian Assis, Emails: [email protected]; [email protected]

Abstract

During the Late Cretaceous Andean orogeny, the compressive deformation associated with the shallowing of the subducting slab caused the development of the arc-related igneous rocks known as the Naunauco Belt. This study presents petrographic, mineralogical and anisotropy of magnetic susceptibility data for the Varvarco Intrusives (the Varvarco Tonalite, Butalón Tonalite and Radales Aplite), which crop out in the Cordillera del Viento, Neuquén Province, Argentina. The assembly of plutons was formed by mafic magma episodic injection. Amphibole and biotite compositions suggest that the Varvarco Tonalite is related to calc-alkaline, I-type magmas, typical of subduction environments. Different geothermobarometers based on amphibole and plagioclase compositions for the Varvarco Tonalite suggest shallow emplacement conditions (∼2–3 kbar, equivalent to ∼12 km depth). Apatite fission-track analyses give exhumation ages of 67.5 ± 8 Ma for the Varvarco Tonalite and 50.3 ± 5.9 Ma for the Butalón Tonalite. A calculated continuous fast exhumation rate of at least 330 °C Ma−1 is consistent with the shallow emplacement conditions, textural data and geobarometric estimations. In agreement with the thermal profile, the magmatic system was exhumed by ∼12 km within c. 2.1 Ma implying a geothermal gradient of ∼62.5 °C km−1. The last step of exhumation occurred between ∼65.3 and 56.9 Ma. The magmatic fabrics observed in the studied plutons reflect mostly magma chamber processes. The Varvarco Intrusives represent satellite calc-alkaline plutons of the North Patagonian Batholith which were emplaced syn- to post-tectonically with respect to a major deformation stage of the Southern Central Andes.

Type
Original Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdel-Rahman, A-FM (1994) Nature of biotites from alkaline, calc-alkaline, and peraluminous magmas. Journal of Petrology 35, 525–41. doi: 10.1093/petrology/35.2.525 CrossRefGoogle Scholar
Allmendinger, RW, Cardozo, N and Fisher, DM (2012) Structural Geology Algorithms: Vectors and Tensors. Cambridge: Cambridge University Press, 289 pp. doi: 10.1017/CBO9780511920202 Google Scholar
Anderson, JL and Smith, DR (1995) The effects of temperature and fO2 on the Al-in-hornblende barometer. American Mineralogist 80, 549–59. doi: 10.2138/am-1995-5-614 CrossRefGoogle Scholar
Archanjo, CJ, Launeau, P and Bouchez, JL (1995) Magnetic fabric vs. magnetite and biotite shape fabrics of the magnetite-bearing granite pluton of Gameleiras (Northeast Brazil). Physics of the Earth and Planetary Interiors 89, 6375. doi: 10.1016/0031-9201(94)02997-P CrossRefGoogle Scholar
Archanjo, CJ, Trindade, RIF, Bouchez, JL and Ernesto, M (2002) Granite fabrics and regional-scale strain partitioning in the Seridó belt (Borborema Province, NE Brazil). Tectonics 21, 1003. doi: 10.1029/2000TC001269 CrossRefGoogle Scholar
Arregui, C, Carbone, O and Leanza, HA (2011) Contexto tectosedimentario. In Relatorio Del 18° Congreso Geológico Argentino, Neuquén, pp. 2936.Google Scholar
Assis, OS (2019) Petrografía y fábrica magnética de la Granodiorita Varvarco y plutones asociados, Cretácico Tardío-Paleoceno de los Andes Neuquinos. Final degree project in geology, Universidad Nacional de Río Negro, Argentina. Published thesis http://rid.unrn.edu.ar/jspui/handle/20.500.12049/2256 Google Scholar
Bachmann, O and Bergantz, GW (2008) Deciphering magma chamber dynamics from styles of compositional zoning in large silicic ash flow sheets. Reviews in Mineralogy and Geochemistry 69, 651–74. doi: 10.2138/rmg.2008.69.17 CrossRefGoogle Scholar
Barbarin, B (2005) Mafic magmatic enclaves and mafic rocks associated with some granitoids of the central Sierra Nevada batholith, California: nature, origin, and relations with the hosts. Lithos 80, 155–77. doi: 10.1016/j.lithos.2004.05.010 CrossRefGoogle Scholar
Bateman, R (1995) The interplay between crystallization, replenishment and hybridization in large felsic magma chambers. Earth-Science Reviews 39, 91106. doi: 10.1016/0012-8252(95)00003-S CrossRefGoogle Scholar
Bateman, PC and Eaton, JP (1967) Sierra Nevada Batholith. Science 158, 1407–17.CrossRefGoogle ScholarPubMed
Behrens, H and Gaillard, F (2006) Geochemical aspects of melts: volatiles and redox behavior. Elements 2, 275–80. doi: 10.2113/gselements.2.5.275 CrossRefGoogle Scholar
Borradaile, GJ and Henry, B (1997) Tectonic applications of magnetic susceptibility and its anisotropy. Earth-Science Reviews 42, 4993. doi: 10.1016/S0012-8252(96)00044-X CrossRefGoogle Scholar
Borradaile, GJ and Jackson, M (2010) Structural geology, petrofabrics and magnetic fabrics (AMS, AARM, AIRM). Journal of Structural Geology 32, 1519–51. doi: 10.1016/j.jsg.2009.09.006 CrossRefGoogle Scholar
Bouchez, J-L (2000) Anisotropie de susceptibilité magnétique et fabrique des granites. Comptes Rendus de l’Académie des Sciences, Series IIA, Earth and Planetary Science 330, 114. doi: 10.1016/S1251-8050(00)00120-8 Google Scholar
Cardozo, N and Allmendinger, RW (2013) Spherical projections with OSXStereonet. Computers & Geosciences 51, 193205. doi: 10.1016/j.cageo.2012.07.021 CrossRefGoogle Scholar
Casé, AM, López-Escobar, L, Danieli, JC and Schalamuk, A (2008) Butalón igneous rocks, Neuquén, Argentina: age, stratigraphic relationships and geochemical features. Journal of South American Earth Sciences 26, 188203. doi: 10.1016/j.jsames.2007.11.001 CrossRefGoogle Scholar
Castro, A, Moreno-Ventas, I and de la Rosa, JD (1991) Multistage crystallization of tonalitic enclaves in granitoid rocks (Hercynian belt, Spain): implications for magma mixing. Geologische Rundschau 80, 109–20. doi: 10.1007/BF01828770 CrossRefGoogle Scholar
Castro, A, Moreno-Ventas, I, Fernández, C, Vujovich, G, Gallastegui, G, Heredia, N, Martino, RDD, Becchio, R, Corretgé, LGG, Díaz-Alvarado, J, Such, P, García-Arias, M and Liu, D-Y (2011) Petrology and SHRIMP U–Pb zircon geochronology of Cordilleran granitoids of the Bariloche area, Argentina. Journal of South American Earth Sciences 32, 508–30. doi: 10.1016/j.jsames.2011.03.011 CrossRefGoogle Scholar
Chadima, M and Jelinek, V (2009) Anisoft 4.2: Anisotropy Data Browser for Windows. Brno: Advanced Geoscience Instruments Company (AGICO).Google Scholar
Clark, RN (1999) Spectroscopy of rocks and minerals and principles of spectroscopy. In Manual of Remote Sensing, Volume 3, Remote Sensing for the Earth Sciences (ed. Rencz, AN), pp. 358. New York: John Wiley & Sons.Google Scholar
Cobbold, PR and Rossello, EA (2003) Aptian to recent compressional deformation, foothills of the Neuquén Basin, Argentina. Marine and Petroleum Geology 20, 429–43. doi: 10.1016/S0264-8172(03)00077-1 CrossRefGoogle Scholar
Czamanske, GK and Wones, DR (1973) Oxidation during magmatic differentiation, Finnmarka Complex, Oslo Area, Norway: Part 2, the mafic silicates. Journal of Petrology 14, 349–80. doi: 10.1093/petrology/14.3.349 CrossRefGoogle Scholar
Dale, J, Powell, R, White, RW, Elmer, FL and Holland, TJB (2005) A thermodynamic model for Ca–Na clinoamphiboles in Na2O–CaO–FeO–MgO–Al2O3–SiO2–H2O–O for petrological calculations. Journal of Metamorphic Geology 23, 771–91. doi: 10.1111/j.1525-1314.2005.00609.x CrossRefGoogle Scholar
Day, R, Fuller, M and Schmidt, VA (1977) Hysteresis properties of titanomagnetites: grain-size and compositional dependence. Physics of the Earth and Planetary Interiors 13, 260–7.CrossRefGoogle Scholar
D’Eramo, F, Pinotti, L, Tubía, JM, Vegas, N, Aranguren, A, Tejero, R and Gómez, D (2006) Coalescence of lateral spreading magma ascending through dykes: a mechanism to form a granite canopy (El Hongo pluton, Sierras Pampeanas, Argentina). Journal of the Geological Society, London 163, 881–92. doi: 10.1144/0016-764905-060 CrossRefGoogle Scholar
de Saint-Blanquat, M, Habert, G, Horsman, E, Morgan, SS, Tikoff, B, Launeau, P and Gleizes, G (2006) Mechanisms and duration of non-tectonically assisted magma emplacement in the upper crust: the Black Mesa pluton, Henry Mountains, Utah. Tectonophysics 428, 131. doi: 10.1016/j.tecto.2006.07.014 CrossRefGoogle Scholar
de Saint Blanquat, M and Tikoff, B (1997) Development of magmatic to solid-state fabrics during syntectonic emplacement of the Mono Creek Granite, Sierra Nevada Batholith. In Granite: From Segregation of Melt to Emplacement Fabrics (ed. Bouchez, JL), pp. 231–52. Dordrecht: Springer. doi: 10.1007/978-94-017-1717-5_15 CrossRefGoogle Scholar
Deer, WA, Howie, RA and Zussman, J (2013) An Introduction to the Rock-Forming Minerals. London: Mineralogical Society of Great Britain and Ireland.CrossRefGoogle Scholar
Digregorio, JH (1972) Neuquén. In Geología Regional Argentina (ed. Leanza, AF), pp. 439505. Córdoba: Academia Nacional de Ciencias.Google Scholar
Digregorio, JH and Uliana, MA (1980) Cuenca Neuquina. In Geología Regional Argentina (ed. Turner, JCM), pp. 9851032. Córdoba: Academia Nacional de Ciencias.Google Scholar
Dunkl, I (2002) Trackkey: a Windows program for calculation and graphical presentation of fission track data. Computers & Geosciences 28, 312. doi: 10.1016/S0098-3004(01)00024-3 CrossRefGoogle Scholar
Ehlers, TA and Farley, KA (2003) Apatite (U–Th)/He thermochronometry: methods and applications to problems in tectonics and surface processes. Earth and Planetary Science Letters 206, 114.CrossRefGoogle Scholar
England, P and Molnar, P (1990) Surface uplift, uplift of rocks, and exhumation of rocks. Geology 18, 1173–7. doi: 10.1130/0091-7613(1990)018<1173:SUUORA>2.3.CO;2 2.3.CO;2>CrossRefGoogle Scholar
Erdmann, S, Martel, C, Pichavant, M and Kushnir, A (2014) Amphibole as an archivist of magmatic crystallization conditions: problems, potential, and implications for inferring magma storage prior to the paroxysmal 2010 eruption of Mount Merapi, Indonesia. Contributions to Mineralogy and Petrology 167, 1016. doi: 10.1007/s00410-014-1016-4 CrossRefGoogle Scholar
Ferré, EC and Améglio, L (2000) Preserved magnetic fabrics vs. annealed microstructures in the syntectonic recrystallised George granite, South Africa. Journal of Structural Geology 22, 1199–219. doi: 10.1016/S0191-8141(00)00026-2 CrossRefGoogle Scholar
Foland, KA (1974) Ar40 diffusion in homogeneous orthoclase and an interpretation of Ar diffusion in K-feldspars. Geochimica et Cosmochimica Acta 38, 151–66.CrossRefGoogle Scholar
Foster, MD (1960) Interpretation of the composition of trioctahedral micas. United States Geological Survey Professional Paper 354, 1148.Google Scholar
Franchini, M, López-Escobar, L, Schalamuk, IBA and Meinert, L (2003) Magmatic characteristics of the Paleocene Cerro Nevazón region and other Late Cretaceous to Early Tertiary calc-alkaline subvolcanic to plutonic units in the Neuquén Andes, Argentina. Journal of South American Earth Sciences 16, 399421. doi: 10.1016/S0895-9811(03)00103-2 CrossRefGoogle Scholar
Galbraith, RF (1981) On statistical models for fission track counts. Journal of the International Association for Mathematical Geology 13, 471–8. doi: 10.1007/BF01034498 CrossRefGoogle Scholar
Galetto, A, Georgieva, V, García, VH, Zattin, M, Sobel, ER, Glodny, J, Bordese, S, Arzadún, G, Bechis, F, Caselli, AT and Becchio, R (2021) Cretaceous and Eocene rapid cooling phases in the Southern Andes (36°–37°S): insights from low-temperature thermochronology, U–Pb geochronology and inverse thermal modeling from Domuyo area, Argentina. Tectonics 40, 130. doi: 10.1029/2020TC006415 CrossRefGoogle Scholar
Giacosa, R, Allard, J, Foix, N and Heredia, N (2014) Stratigraphy, structure and geodynamic evolution of the Paleozoic rocks in the Cordillera del Viento (37° S latitude, Andes of Neuquén, Argentina). Journal of Iberian Geology 40, 331–48. doi: 10.5209/rev_JIGE.2014.v40.n2.45301 CrossRefGoogle Scholar
Gill, JB (1981) Orogenic Andesites and Plate Tectonics. Berlin, Heidelberg: Springer-Verlag. doi: 10.1007/978-3-642-68012-0 CrossRefGoogle Scholar
Green, PF (1981) A new look at statistics in fission-track dating. Nuclear Tracks 5, 7786. doi: 10.1016/0191-278X(81)90029-9 CrossRefGoogle Scholar
Grégoire, V, de Saint Blanquat, M, Nédélec, A and Bouchez, J-L (1995) Shape anisotropy versus magnetic interactions of magnetite grains: experiments and application to AMS in granitic rocks. Geophysical Research Letters 22, 2765–8. doi: 10.1029/95GL02797 CrossRefGoogle Scholar
Gulisano, CA, Gutiérrez Pleimling, AR and Digregorio, RE (1984) Esquema estratigráfico de la secuencia jurásica del oeste de la provincia del Neuquén. In 9° Congreso Geológico Argentino, pp. 236–59.Google Scholar
Hammarstrom, JM and Zen, E (1986) Aluminum in hornblende: an empirical igneous geobarometer. American Mineralogist 71, 1297–313.Google Scholar
Harrison, TM and McDougall, I (1982) The thermal significance of potassium feldspar K–Ar ages inferred from 40Ar/39Ar age spectrum results. Geochimica et Cosmochimica Acta 46, 1811–20.CrossRefGoogle Scholar
Henry, DJ, Guidotti, CV and Thomson, JA (2005) The Ti-saturation surface for low-to-medium pressure metapelitic biotites: implications for geothermometry and Ti-substitution mechanisms. American Mineralogist 90, 316–28.CrossRefGoogle Scholar
Hervé, F, Pankhurst, RJ, Fanning, CM, Calderón, M and Yaxley, GM (2007) The South Patagonian batholith: 150 my of granite magmatism on a plate margin. Lithos 97, 373–94. doi: 10.1016/j.lithos.2007.01.007 CrossRefGoogle Scholar
Hibbard, MJ (1981) The magma mixing origin of mantled feldspars. Contributions to Mineralogy and Petrology 76, 158–70. doi: 10.1007/BF00371956 CrossRefGoogle Scholar
Hibbard, MJ (1991) Textural anatomy of twelve magma-mixed granitoid systems. In Enclaves and Granite Petrology (eds Didier, J and Barbarin, B), pp. 431–44. Amsterdam: Elsevier.Google Scholar
Higgins, MD (2011) Textural coarsening in igneous rocks. International Geology Review 53, 354–76. doi: 10.1080/00206814.2010.496177 CrossRefGoogle Scholar
Higgins, MD and Roberge, J (2003) Crystal size distribution of plagioclase and amphibole from Soufriere Hills Volcano, Montserrat: evidence for dynamic crystallization-textural coarsening cycles. Journal of Petrology 44, 1401–11. doi: 10.1093/petrology/44.8.1401 CrossRefGoogle Scholar
Holland, T and Blundy, J (1994) Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contributions to Mineralogy and Petrology 116, 433–47. doi: 10.1007/BF00310910 CrossRefGoogle Scholar
Hollister, LS, Grissom, GC, Peters, EK, Stowell, HH and Sisson, VB (1987) Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons. American Mineralogist 72, 231–9.Google Scholar
Howell, JA, Schwarz, E, Spalletti, LA and Veiga, GD (2005) The Neuquén Basin: an overview. In The Neuquén Basin, Argentina: A Case Study in Sequence Stratigraphy and Basin Dynamics (eds Veiga, GD, Spalletti, LA, Howell, JA and Schwarz, E), pp. 114. Geological Society of London, Special Publication no. 252.Google Scholar
Hurford, AJ and Green, PF (1982) A users’ guide to fission track dating calibration. Earth and Planetary Science Letters 59, 343–54. doi: 10.1016/0012-821X(82)90136-4 CrossRefGoogle Scholar
Hurford, AJ and Green, PF (1983) The zeta age calibration of fission-track dating. Chemical Geology 41, 285317. doi: 10.1016/S0009-2541(83)80026-6 CrossRefGoogle Scholar
Ishihara, S (1977) The magnetite-series and ilmenite-series granitic rocks. Mining Geology 27, 293305.Google Scholar
Jelínek, V (1978) Statistical processing of anisotropy of magnetic susceptibility measured on groups of specimens. Studia Geophysica et Geodaetica 22, 5062. doi: 10.1007/BF01613632 CrossRefGoogle Scholar
Jelinek, V (1981) Characterization of the magnetic fabric of rocks. Tectonophysics 79, T63T67. doi: 10.1016/0040-1951(81)90110-4 CrossRefGoogle Scholar
Johnson, MC and Rutherford, MJ (1989) Experimental calibration of the aluminum-in-hornblende geobarometer with application to Long Valley caldera (California) volcanic rocks. Geology 17, 837–41. doi: 10.1130/0091-7613(1989)017<0837:ECOTAI>2.3.CO;2 2.3.CO;2>CrossRefGoogle Scholar
Jordan, TE, Burns, WM, Veiga, R, Pángaro, F, Copeland, P, Kelley, S and Mpodozis, C (2001) Extension and basin formation in the southern Andes caused by increased convergence rate: a mid-Cenozoic trigger for the Andes. Tectonics 20, 308–24. doi: 10.1029/1999TC001181 CrossRefGoogle Scholar
Kawakatsu, K and Yamaguchi, Y (1987) Successive zoning of amphiboles during progressive oxidation in the Daito-Yokota granitic complex, San-in belt, southwest Japan. Geochimica et Cosmochimica Acta 51, 535–40. doi: 10.1016/0016-7037(87)90067-6 CrossRefGoogle Scholar
Kay, SM, Burns, WM, Copeland, P and Mancilla, O (2006) Upper Cretaceous to Holocene magmatism and evidence for transient Miocene shallowing of the Andean subduction zone under the northern Neuquén Basin. In Evolution of an Andean Margin: A Tectonic and Magmatic View from the Andes to the Neuquén Basin (35°–39°S Lat) (eds Kay, SM and Ramos, VA), pp. 1690. Geological Society of America, Special Papers vol. 407. doi: 10.1130/2006.2407(02) Google Scholar
Kiss, B, Harangi, S, Ntaflos, T, Mason, PRD and Pál-Molnár, E (2014) Amphibole perspective to unravel pre-eruptive processes and conditions in volcanic plumbing systems beneath intermediate arc volcanoes: a case study from Ciomadul volcano (SE Carpathians). Contributions to Mineralogy and Petrology 167, 986. doi: 10.1007/s00410-014-0986-6 CrossRefGoogle Scholar
Leake, BE, Woolley, AR, Arps, CES, Birch, WD, Gilbert, MC, Grice, JD, Hawthorne, FC, Kato, A, Kisch, HJ, Krivovichev, VG, Linthout, K, Laird, J, Mandarino, J, Maresch, WV, Nickel, EH, Rock, NMS, Schumacher, JC, Smith, DC, Stephenson, NCN, Ungaretti, L, Whittaker, EJW and Youzhi, G (1997) Nomenclature of amphiboles; report of the subcommittee on amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. Mineralogical Magazine 61, 295321. doi: 10.1180/minmag.1997.061.405.13 CrossRefGoogle Scholar
Leanza, HA, Llambías, EJ and Carbone, O (2005) Unidades estratigráficas limitadas por discordancias en los depocentros de la Cordillera del Viento y la Sierra de Chacaico durante los inicios de la Cuenca Neuquina. In 6º Congreso de Exploración de Hidrocarburos, p. 13.Google Scholar
Lee, JKW, Williams, IS and Ellis, DJ (1997) Pb, U and Th diffusion in natural zircon. Nature 390, 159–62. doi: 10.1038/36554 CrossRefGoogle Scholar
Legarreta, L and Uliana, MA (1991) Jurassic—marine oscillations and geometry of back-arc basin fill, central Argentine Andes. In Sedimentation, Tectonics and Eustasy: Sea-level Changes at Active Margins (ed. Macdonald, DIM), pp. 429–50. Oxford: Blackwell Publishing Ltd. doi: 10.1002/9781444303896.ch23 CrossRefGoogle Scholar
Li, X, Chi, G, Zhou, Y, Deng, T and Zhang, J (2017) Oxygen fugacity of Yanshanian granites in South China and implications for metallogeny. Ore Geology Reviews 88, 690701.CrossRefGoogle Scholar
Li, X, Zhang, C, Behrens, H and Holtz, F (2020) Calculating biotite formula from electron microprobe analysis data using a machine learning method based on principal components regression. Lithos 356–357, 105371. doi: 10.1016/j.lithos.2020.105371CrossRefGoogle Scholar
Llambías, EJ and Aragón, E (2011) Volcanismo Paleógeno. In Relatorio Del 18º Congreso Geológico Argentino, Neuquén, pp. 265–74.Google Scholar
Llambías, EJ, Leanza, HA and Carbone, O (2007) Evolución tectono-magmática durante el Pérmico al Jurásico temprano en la Cordillera del Viento (37°05′S – 37°15′S): nuevas evidencias geológicas y geoquímicas del inicio de la Cuenca Neuquina. Revista de la Asociación Geologica Argentina 62, 217–35.Google Scholar
Llambías, EJ and Malvicini, L (1978) Geología, petrología y metalogénesis del área de Colipilli, provincia del Neuquén, República Argentina. Revista de la Asociación Geológica Argentina 33, 257–76.Google Scholar
Llambías, EJ and Rapela, CW (1989) Las volcanitas de Collipilli, Neuquén (37°S) y su relación con otras unidades paleógenas de la cordillera. Revista de la Asociación Geológica Argentina 44, 224–36.Google Scholar
McNulty, BA, Tobisch, OT, Cruden, AR and Gilder, S (2000) Multistage emplacement of the Mount Givens pluton, central Sierra Nevada batholith, California. Geological Society of America Bulletin 112, 119–35. doi: 10.1130/0016-7606(2000)112<119:MEOTMG>2.0.CO;2 2.0.CO;2>CrossRefGoogle Scholar
Molina, JF, Cambeses, A, Moreno, JA, Morales, I, Montero, P and Bea, F (2021) A reassessment of the amphibole-plagioclase NaSi–CaAl exchange thermometer with applications to igneous and high-grade metamorphic rocks. American Mineralogist 106, 782800.CrossRefGoogle Scholar
Molina, JF, Montero, P, Bea, F and Scarrow, JH (2012) Anomalous xenocryst dispersion during tonalite-granodiorite crystal mush hybridization in the mid crust: mineralogical and geochemical evidence from Variscan appinites (Avila Batholith, Central Iberia). Lithos 153, 224–42. doi: 10.1016/j.lithos.2012.03.021 CrossRefGoogle Scholar
Molina, JF, Moreno, JA, Castro, A, Rodríguez, C and Fershtater, GB (2015) Calcic amphibole thermobarometry in metamorphic and igneous rocks: new calibrations based on plagioclase/amphibole Al-Si partitioning and amphibole/liquid Mg partitioning. Lithos 232, 286305. doi: 10.1016/j.lithos.2015.06.027 CrossRefGoogle Scholar
Molina, JF, Scarrow, JH, Montero, PG and Bea, F (2009) High-Ti amphibole as a petrogenetic indicator of magma chemistry: evidence for mildly alkalic-hybrid melts during evolution of Variscan basic–ultrabasic magmatism of Central Iberia. Contributions to Mineralogy and Petrology 158, 6998. doi: 10.1007/s00410-008-0371-4 CrossRefGoogle Scholar
Mollo, S, Putirka, K, Iezzi, G, Del Gaudio, P and Scarlato, P (2011) Plagioclase-melt (dis)equilibrium due to cooling dynamics: implications for thermometry, barometry and hygrometry. Lithos 125, 221–35. doi: 10.1016/j.lithos.2011.02.008 CrossRefGoogle Scholar
Nachit, H, Ibhi, A, Abia, EH and Ben Ohoud, M (2005) Discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites. Comptes Rendus Geoscience 337, 1415–20. doi: 10.1016/j.crte.2005.09.002 CrossRefGoogle Scholar
Nédélec, A and Bouchez, J-L (2015) Granites: Petrology, Structure, Geological Setting, and Metallogeny. Oxford: Oxford University Press.CrossRefGoogle Scholar
Neves, SP, Araújo, AMB, Correia, PB and Mariano, G (2003) Magnetic fabrics in the Cabanas Granite (NE Brazil): interplay between emplacement and regional fabrics in a dextral transpressive regime. Journal of Structural Geology 25, 441–53. doi: 10.1016/S0191-8141(02)00003-2 CrossRefGoogle Scholar
Olivier, P, Druguet, E, Castaño, LM and Gleizes, G (2016) Granitoid emplacement by multiple sheeting during Variscan dextral transpression: the Saint-Laurent – La Jonquera pluton (Eastern Pyrenees). Journal of Structural Geology 82, 8092. doi: 10.1016/j.jsg.2015.1b.d.l.6 CrossRefGoogle Scholar
Pankhurst, RJ, Weaver, SD, Hervé, F and Larrondo, P (1999) Mesozoic–Cenozoic evolution of the North Patagonian Batholith in Aysen, southern Chile. Journal of the Geological Society, London 156, 673–94. doi: 10.1144/gsjgs.156.4.0673 CrossRefGoogle Scholar
Paterson, SR, Fowler, TK, Schmidt, KL, Yoshinobu, AS, Yuan, ES and Miller, RB (1998) Interpreting magmatic fabric patterns in plutons. Lithos 44, 5382.CrossRefGoogle Scholar
Payacán, I, Gutiérrez, F, Gelman, SE, Bachmann, O and Parada, MA (2014) Comparing magnetic and magmatic fabrics to constrain the magma flow record in La Gloria pluton, central Chile. Journal of Structural Geology 69, 3246. doi: 10.1016/j.jsg.2014.09.015 CrossRefGoogle Scholar
Pesce, AH (1981) Estratigrafía de las nacientes del río Neuquén y Nahuever, Provincia del Neuquén. In Actas 8º Congreso Geológico Argentino, pp. 439–55.Google Scholar
Putirka, K (2016) Amphibole thermometers and barometers for igneous systems and some implications for eruption mechanisms of felsic magmas at arc volcanoes. American Mineralogist 101, 841–58. doi: 10.2138/am-2016-5506 CrossRefGoogle Scholar
Ramos, V (1999) Rasgos estructurales del territorio argentino. In Geología Argentina (ed. Caminos, R), pp. 715–84. Buenos Aires: Instituto de Geología y Recursos Minerales, Servicio Geológico Minero Argentino. Google Scholar
Ramos, V, Mosquera, A, Folguera, A and García Morabito, E (2011) Evolución tectónica de los Andes y del Engolfamiento Neuquino adyacente. In Relatorio Del 18º Congreso Geologico Argentino, Neuquén, pp. 335–48.Google Scholar
Ramos, VA, Niemeyer, H, Skarmeta, J and Muñoz, J (1982) Magmatic evolution of the Austral Patagonian Andes. Earth-Science Reviews 18, 411–31. doi: 10.1016/0012-8252(82)90047-2 CrossRefGoogle Scholar
Rapela, CW and Llambías, EJ (1985) La secuencia andesítica terciaria de Andacollo, Neuquén, Argentina. In 4º Congreso Geológico Chileno, pp. 458–88.Google Scholar
Reiners, PW and Ehlers, TA (eds) (2005) Low-temperature Thermochronology: Techniques, Interpretations, and Applications. Reviews in Mineralogy and Geochemistry, vol. 58, 620 pp.CrossRefGoogle Scholar
Riccardi, AC and Stipanicic, PN (2002) Fase diastrófica Río Atuel. In Léxico Estratigráfico de La Argentina. Triásico (eds Stipanicic, PN and Marsicano, CA), p. 245. Buenos Aires: Asociación Geológica Argentina.Google Scholar
Ridolfi, F and Renzulli, A (2012) Calcic amphiboles in calc-alkaline and alkaline magmas: thermobarometric and chemometric empirical equations valid up to 1,130°C and 2.2 GPa. Contributions to Mineralogy and Petrology 163, 877–95. doi: 10.1007/s00410-011-0704-6 CrossRefGoogle Scholar
Ridolfi, F, Renzulli, A and Puerini, M (2010) Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes. Contributions to Mineralogy and Petrology 160, 4566. doi: 10.1007/s00410-009-0465-7 CrossRefGoogle Scholar
Rochette, P, Aubourg, C and Perrin, M (1999) Is this magnetic fabric normal? A review and case studies in volcanic formations. Tectonophysics 307, 219–34. doi: 10.1016/S0040-1951(99)00127-4 CrossRefGoogle Scholar
Rochette, P, Jackson, M and Aubourg, C (1992) Rock magnetism and the interpretation of anisotropy of magnetic susceptibility. Reviews of Geophysics 30, 209. doi: 10.1029/92RG00733 CrossRefGoogle Scholar
Sagripanti, L, Folguera, A, Giménez, M, Rojas Vera, EA, Fabiano, JJ, Molnar, N, Fennell, L and Ramos, VA (2014) Geometry of Middle to Late Triassic extensional deformation pattern in the Cordillera del Viento (Southern Central Andes): a combined field and geophysical study. Journal of Iberian Geology 40, 349–66. doi: 10.5209/rev_JIGE.2014.v40.n2.45305 CrossRefGoogle Scholar
Sánchez, NP, Coutand, I, Turienzo, M, Lebinson, F, Araujo, V and Dimieri, L (2018) Tectonic evolution of the Chos Malal Fold-and-Thrust Belt (Neuquén Basin, Argentina) from (U-Th)/He and fission track thermochronometry. Tectonics 37, 1907–29. doi: 10.1029/2018TC004981 CrossRefGoogle Scholar
Schmidt, MW (1992) Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer. Contributions to Mineralogy and Petrology 110, 304–10. doi: 10.1007/BF00310745 CrossRefGoogle Scholar
Siégel, C, Bryan, SE, Allen, CM and Gust, DA (2018) Use and abuse of zircon-based thermometers: a critical review and a recommended approach to identify antecrystic zircons. Earth-Science Reviews 176, 87116. doi: 10.1016/j.earscirev.2017.08.011 CrossRefGoogle Scholar
Sigismondi, ME (2013) Estudio de la deformacion litosférica de la Cuenca Neuquina: estructura termal, datos de gravedad y sísmica de reflexion. Ph.D. thesis, Universidad de Buenos Aires, Buenos Aires, Argentina. Published thesis. Biblioteca Digital de la Facultad de Ciencias Exactas y Naturales. http://digital.bl.fcen.uba.ar/Download/Tesis/Tesis_5361_Sigismondi.pdf Google Scholar
Sigismondi, M and Ramos, VA (2009a) El flujo de calor de la Cuenca Neuquina, Argentina, primera parte. Revista del Instituto Argentino del Petróleo y Gas, Petrotecnia 1, 6481.Google Scholar
Sigismondi, M and Ramos, VA (2009b) El flujo de calor de la Cuenca Neuquina, Argentina, segunda parte. Revista del Instituto Argentino del Petróleo y Gas, Petrotecnia 2, 5876.Google Scholar
Somoza, R, Tomlinson, AJ, Zaffarana, CB, Singer, SE, Puigdomenech Negre, CG, Raposo, MIB and Dilles, JH (2015) Tectonic rotations and internal structure of Eocene plutons in Chuquicamata, northern Chile. Tectonophysics 654, 113–30. doi: 10.1016/j.tecto.2015.05.005 CrossRefGoogle Scholar
Spagnuolo, MG, Folguera, A, Litvak, V, Rojas Vera, EA and Ramos, VA (2012) Late Cretaceous arc rocks in the Andean retroarc region at 36.5°S: evidence supporting a Late Cretaceous slab shallowing. Journal of South American Earth Sciences 38, 4456. doi: 10.1016/j.jsames.2012.05.002 CrossRefGoogle Scholar
Stevenson, C (2009) The relationship between forceful and passive emplacement: the interplay between tectonic strain and magma supply in the Rosses Granitic Complex, NW Ireland. Journal of Structural Geology 31, 270–87. doi: 10.1016/j.jsg.2008.11.009 CrossRefGoogle Scholar
Stipanicic, PN (1966) El Jurásico en Vega de la Veranada (Neuquén), el Oxfordense y el diastrofismo Divesiano (Agassiz-Yaila) en Argentina. Revista de la Asociación Geológica Argentina 20, 403–78.Google Scholar
Suárez, M and de la Cruz, R (1997) Volcanismo pliniano del Lías durante los inicios de la cuenca de Neuquén, Cordillera del Viento, Neuquén, Argentina. In Actas 7º Congreso Geológico Chileno. Concepción, Vol. 1, pp. 266–70.Google Scholar
Tischendorf, G, Gottesmann, B, Förster, H-J and Trumbull, RB (1997) On Li-bearing micas: estimating Li from electron microprobe analyses and an improved diagram for graphical representation. Mineralogical Magazine 61, 809–34. doi: 10.1180/minmag.1997.061.409.05 CrossRefGoogle Scholar
Tobisch, OT, McNulty, BA and Vernon, RH (1997) Microgranitoid enclave swarms in granitic plutons, central Sierra Nevada, California. Lithos 40, 321–39. doi: 10.1016/S0024-4937(97)00004-2 CrossRefGoogle Scholar
Turienzo, M, Sánchez, N, Lebinson, F and Dimieri, L (2018) The structure of the Southern Central Andes (Chos Malal Fold and Thrust Belt). In The Evolution of the Chilean-Argentinean Andes (eds Folguera, A, Contreras-Reyes, E, Heredia, N, Encinas, A, Iannelli, SB, Oliveros, V, Dávila, FM, Collo, G, Giambiagi, L, Maksymowicz, A, Iglesia Llanos, MP, Turienzo, M, Naipauer, M, Orts, D, Litvak, VD, Alvarez, O and Arriagada, C), pp. 411–41. Cham: Springer International Publishing. doi: 10.1007/978-3-319-67774-3_17 Google Scholar
Vergani, GD, Tankard, AJ, Belotti, HJ and Welsink, HJ (1995) Tectonic evolution and paleogeography of the Neuquén Basin, Argentina. In Petroleum Basins of South America (eds Tankard, AJ, Suárez Soruco, R and Welsink, HJ), pp. 383402. American Association of Petroleum Geologists Memoir no. 62. doi: 10.1306/M62593C19 CrossRefGoogle Scholar
Vernon, RH (1990) Crystallization and hybridism in microgranitoid enclave magmas: microstructural evidence. Journal of Geophysical Research 95, 17849. doi: 10.1029/JB095iB11p17849 CrossRefGoogle Scholar
Vernon, RH (2010) Granites really are magmatic: using microstructural evidence to refute some obstinate hypotheses. Journal of the Virtual Explorer 35, 136. doi: 10.3809/jvirtex.2011.00264 CrossRefGoogle Scholar
Wack, MR and Gilder, SA (2012) The SushiBar: an automated system for paleomagnetic investigations. Geochemistry, Geophysics, Geosystems 13, 124. doi: 10.1029/2011GC003985 CrossRefGoogle Scholar
Wagner, M, Altherr, R and Van den haute, P (1992) Apatite fission-track analysis of Kenyan basement rocks: constraints on the thermotectonic evolution of the Kenya dome. A reconnaissance study. Tectonophysics 204, 93110. doi: 10.1016/0040-1951(92)90272-8 CrossRefGoogle Scholar
Wones, DR and Eugster, HP (1965) Stability of biotite: experiment, theory, and application. The American Mineralogist 50, 1228–72.Google Scholar
Wyllie, PJ, Cox, KG and Biggar, GM (1962) The habit of apatite in synthetic systems and igneous rocks. Journal of Petrology 3, 238–43. doi: 10.1093/petrology/3.2.238 CrossRefGoogle Scholar
Zaffarana, CB, Somoza, R and López de Luchi, M (2014) The Late Triassic Central Patagonian Batholith: magma hybridization, 40Ar/39Ar ages and thermobarometry. Journal of South American Earth Sciences 55, 94122. doi: 10.1016/j.jsames.2014.06.006 CrossRefGoogle Scholar
Zaffarana, CB, Somoza, R, Orts, DL, Mercader, R, Boltshauser, B, González, VR and Puigdomenech, C (2017) Internal structure of the Late Triassic Central Patagonian batholith at Gastre, southern Argentina: implications for pluton emplacement and the “Gastre fault system.” Geosphere 13, 1973–92. doi: 10.1130/GES01493.1 CrossRefGoogle Scholar
Žák, J, Schulmann, K and Hrouda, F (2005) Multiple magmatic fabrics in the Sázava pluton (Bohemian Massif, Czech Republic): a result of superposition of wrench-dominated regional transpression on final emplacement. Journal of Structural Geology 27, 805–22. doi: 10.1016/j.jsg.2005.01.012 CrossRefGoogle Scholar
Zamora Valcarce, G (2007) Estructura y cinemática de la Faja Plegada y Corrida del Agrio, Cuenca Neuquina. Ph.D. thesis, Universidad de Buenos Aires, Buenos Aires, Argentina. Published thesis.Google Scholar
Zamora Valcarce, G, Zapata, T and Ramos, VA (2011) La Faja Plegada y Corrida del Agrio. In Relatorio Del XVIII Congreso Geológico Argentino, Neuquén, pp. 367–74.Google Scholar
Zanettini, JCM, Santamaría, GR and Leanza, H (2001) Hoja Geológica 3772-II, Las Ovejas. Provincia del Neuquén. Buenos Aires: Instituto de Geología y Recursos Minerales, Servicio Geológico Minero Argentino.Google Scholar
Zappettini, EO, Chernicoff, CJ, Santos, JOS, Dalponte, M, Belousova, E and McNaughton, N (2012) Retrowedge-related Carboniferous units and coeval magmatism in the northwestern Neuquén province, Argentina. International Journal of Earth Sciences 101, 2083–104. doi: 10.1007/s00531-012-0774-3 CrossRefGoogle Scholar
Zappettini, EO, Cozzi, G, Dalponte, M, Godeas, M, Korzeniewski, LI, Peroni, J, Segal, S and Castro Godoy, S (2021) Análisis Geológico y Metalogenético del Sector Norte de la Cordillera del Viento, Provincia del Neuquén. Buenos Aires: Instituto de Geología y Recursos Minerales, Servicio Geológico Minero Argentino. Serie Contribuciones Técnicas Recursos Minerales no. 44, 51 pp.Google Scholar
Zappettini, E, Korzeniewski, LI and Segal, S (2014) Nuevos datos de las mineralizaciones polimetálicas del distrito Varvarco, Neuquén. In 19º Congreso Geológico Argentino, Córdoba. p. S6-4.Google Scholar
Zappettini, EO, Lagorio, SL, Dalponte, M, Orestes, J and Belousova, E (2018) Evidencias de magmatismo precuyano (Pliensbachiano – Toarciano) en el norte de la Cordillera del Viento, provincia del Neuquén: caracterización geoquímica, isotópica e implicancias tectónicas. Revista de la Asociación Geológica Argentina 75, 533–58.Google Scholar
Zappettini, E, Méndez, V and Zanettini, JC (1987) Metasedimentitas mesopaleozoicas en el noroeste de la Provincia del Neuquén. Revista de la Asociación Geológica Argentina 42, 206–7.Google Scholar
Supplementary material: Image

Assis et al. supplementary material

Assis et al. supplementary material 2

Download Assis et al. supplementary material(Image)
Image 2.2 MB
Supplementary material: Image

Assis et al. supplementary material

Assis et al. supplementary material 1

Download Assis et al. supplementary material(Image)
Image 1.9 MB