Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T05:48:25.101Z Has data issue: false hasContentIssue false

The Early Cretaceous Shangzhuang layered mafic intrusion and its bearing on decratonization of the North China Craton

Published online by Cambridge University Press:  22 May 2017

XUE-MING TENG*
Affiliation:
School of Earth Sciences and Resources, China University of Geosciences Beijing, 29 Xueyuan Road, Beijing 100083, China
M. SANTOSH
Affiliation:
School of Earth Sciences and Resources, China University of Geosciences Beijing, 29 Xueyuan Road, Beijing 100083, China Centre for Tectonics Resources and Exploration, Dept. of Earth Sciences, University of Adelaide, SA 5005, Australia
LI TANG
Affiliation:
School of Earth Sciences and Resources, China University of Geosciences Beijing, 29 Xueyuan Road, Beijing 100083, China Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305–8572, Japan
*
Author for correspondence: [email protected]

Abstract

The North China Craton (NCC) is one of the classic examples of decratonization through extensive lithospheric destruction during Mesozoic time. Among the various pulses of magmatism associated with cratonic erosion are the rare mafic intrusions in the Yanshan Belt. Here we investigate the Shangzhuang layered intrusion belonging to this suite, which is characterized by compositional layering with troctolite, noritic gabbro and gabbro/gabbroic anorthosite/gabbrodiorite from the bottom to top. The different lithologies of this intrusion exhibit close field relationships, similar chemical patterns and overall identical Lu–Hf isotopes indicating a co-magmatic nature. The fine-grained gabbros occurring near the margin of the intrusion display U–Pb ages similar to those of the other rocks and are considered to represent the composition of the parent magma, characterized by Fe, Mg and Ti enrichment. The magma was sourced from low-degree partial melting of spinel lherzolite sub-continental lithospheric mantle, which had been enriched by crust–mantle interaction and metasomatic fluids derived from the Mongolian oceanic slab subduction beneath the NCC during Late Palaeozoic time. In addition, limited asthenospheric or deeper-mantle materials were also locally mixed with the enriched mantle as the final source component. Our zircon U–Pb data constrain the emplacement age of this intrusion as c. 128–123 Ma in Early Cretaceous time, and correlates with the regional extensional tectonics between c. 135 and 115 Ma in the eastern and central NCC. Mantle upwelling associated with this event resulted in the thermal and chemical erosion of the lithospheric mantle, and emplacement of the parent magma of this layered intrusion.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aldanmaz, E., Pearce, J. A., Thirlwall, M. F. & Mitchell, J. G. 2000. Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey. Journal of Volcanology and Geothermal Research 102, 6795.Google Scholar
Amelin, Y., Lee, D. C. & Halliday, A. N. 2000. Early‒Middle Archaean crustal evolution deduced from Lu‒Hf and U‒Pb isotopic studies of single zircon grains. Geochimica et Cosmochimica Acta 64, 4205–25.Google Scholar
Anderson, D. L., Tanimoto, T. & Zhang, Y. 1992. Plate tectonics and hotspots: the third dimension. Science 256, 1645–50.Google Scholar
Anderson, T. 2002. Correction of common Pb in U–Pb analyses that do not report 204Pb. Chemical Geology 192, 5979.Google Scholar
Arndt, N., Lehnert, K. A. & Vasil'ev, Y. 1995. Meimechites: highly magnesian lithosphere–contaminated alkaline magmas from deep subcontinental mantle. Lithos 34, 4159.Google Scholar
Baker, J. A. & Krogh Jensen, K. 2004. Coupled 186Os–187Os enrichments in the Earth's mantle–core–mantle interaction or recycling of ferromanganese crusts and nodules? Earth and Planetary Science Letters 220, 277–86.Google Scholar
Batanova, V. G., Pertsev, A. N., Kamenetsky, V. S., Ariskin, A. A., Mochalov, A. G. & Sobolev, A. V. 2005. Crustal evolution of island-arc ultramafic magma: Galmoenan pyroxenite–dunite plutonic complex, Koryak, Highland (Far East Russia). Journal of Petrology 46, 1345–66.Google Scholar
Berger, A., Burri, T., Alt-Epping, P. & Engi, M. 2008. Tectonically controlled fluid flow and water-assisted melting in the middle crust: an example from the Central Alps. Lithos 102, 598615.Google Scholar
Blichert-Toft, J. & Albarède, F. 1997. The Lu–Hf isotope geochemistry of chondrites and the evolution of the mantle–crust system. Earth and Planetary Science Letters 148, 243–58.Google Scholar
Boyd, F. R. & Gurney, J. 1986. Diamonds and the African lithosphere. Science 239, 472–7.Google Scholar
Brooks, C. K., Larsen, L. M. & Nielsen, T. F. D. 1991. Importance of iron-rich tholeiitic magmas at divergent plate margins: a reappraisal. Geology 19, 269–72.Google Scholar
Campbell, I. H. 1977. Study of macro-rhythmic layering and cumulate processes in Jimberlana intrusion, Western Australia. 1. Upper layered series. Journal of Petrology 18, 183215.Google Scholar
Cawthorn, R. G. 1996. Layered Intrusions [M]. Amsterdam: Elsevier Science.Google Scholar
Charlier, B., Sakoma, E., Sauvé, M., Stanaway, K., Auwera, J. V. & Duchesne, J. C. 2008. The Grader layered intrusion (Havre-Saint-Pierre Anorthosite, Quebec) and genesis of nelsonite and other Fe-Ti–P ores. Lithos 101, 359–78.Google Scholar
Chen, B., Jahn, B. M., Wilde, S. & Xu, B. 2000. Two contrasting Paleozoic magmatic belts in northern Inner Mongolia, China: petrogenesis and tectonic implications. Tectonophysics 328, 157–82.Google Scholar
Chen, B., Tian, W., Jahn, B. M. & Chen, Z. C. 2008. Zircon Shrimp U–Pb ages and in-situ Hf isotopic analysis for the Mesozoic intrusions in South Taihang, North China craton: evidence for hybridization between mantle-derived magmas and crustal components. Lithos 102, 118–37.Google Scholar
Chen, W. T., Zhou, M. F. & Zhao, T. P. 2013. Differentiation of nelsonitic magmas in the formation of the ~1.74 Ga Damiao Fe–Ti–P ore deposit, North China. Contributions to Mineralogy and Petrology 165, 1341–62.Google Scholar
Class, C., Miller, D. M., Goldstein, S. L. & Langmuir, C. H. 2000. Distinguishing melt and fluid subduction components in Umnak Volcanics, Aleutian Arc. Geochemistry Geophysics Geosystems 1, 1004.Google Scholar
Condie, K. C. 2005. High field strength element ratios in Archean basalts: a window to evolving sources of mantle plumes? Lithos 79, 491504.Google Scholar
Darling, R. S. & Florence, F. P. 1995. Apatite light rare earth element chemistry of the Port Leyden nelsonite, Adirondack Highland, New York: implications for the origin of nelsonite in anorthosite suite rocks. Economic Geology 90, 964–8.Google Scholar
Davies, J. H. & von Blanckenburg, F. 1995. Slab breakoff: a model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens. Earth and Planetary Science Letters 129, 85102.Google Scholar
Davis, G. A., Qian, X., Zheng, Y., Yu, H., Wang, C., Tong, H. M., Gehrels, G. E., Shafiquallah, M. & Fryxell, J. E. 1996a. Mesozoic deformation and deformation and plutonism in the Yunmengshan: a Chinese metamorphic core complex north of Beijing. In The Tectonic Evolution of Asia (eds Yin, A. & Harrison, T. M.), pp. 253–80. Cambridge: Cambridge University Press.Google Scholar
Davis, G. A., Qian, X., Zheng, Y., Yu, H., Wang, C., Tong, H. M., Gehrels, G. E., Shafiquallah, M. & Fryxell, J. E. 1996b. The Huairou (Shuiyu) ductile shear zone, Yunmengshan Mts., Beijing. In International Geological Congress, 30th, Field Trip Guide. Beijing: Geological Publishing House, 25 pp.Google Scholar
Davis, G. A., Zheng, Y. D., Wang, C., Darby, B. J., Zhang, C. H. & Gehrels, G. E. 2001. Mesozoic tectonic evolution of the Yanshan fold and thrust belt, with emphasis on Hebei and Liaoning Provinces, Northern China. In Paleozoic and Mesozoic Tectonic Evolution of Central Asia: From Continental Assembly to Intracontinental Deformation (eds Hendrix, M. S. & Davis, G. A.), pp. 171–97. Geological Society of America Memoir no. 194.Google Scholar
Deng, J. F., Su, S. G., Niu, Y. L., Liu, C., Zhao, G. C., Zhao, X. G., Zhou, S. & Wu, Z. X. 2007. A possible model for the lithospheric thinning of North China Craton: evidence from the Yanshanian (Jura-Cretaceous) magmatism and tectonism. Lithos 96, 2235.Google Scholar
Deng, Y. F., Yuan, F., Zhou, T., White, N. C., Zhang, D. Y., Guo, X. J., Zhang, R. F. & Zhao, B. 2015 a. Zircon U–Pb geochronology, geochemistry, and Sr–Nd isotopes of the Ural–Alaskan type Tuerkubantao mafic–ultramafic intrusion in southern Altai orogen, China: petrogenesis and tectonic implications. Journal of Asian Earth Sciences 113, 3650.Google Scholar
Deng, Y. F., Yuan, F., Zhou, T., Xu, C., Zhang, X. & Guo, X. 2015 b. Geochemical characteristics and tectonic setting of the Tuerkubantao mafic-ultramafic intrusion in West Junggar, Xinjiang, China. Geoscience Frontiers 6, 141–52.Google Scholar
Dilek, Y. & Furnes, H. 2011. Ophiolite genesis and global tectonics: geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Geological Society of America Bulletin 123, 387411.Google Scholar
Dymek, R. F. & Owens, B. E. 2001. Petrogenesis of apatite-rich rocks (nelsonites and oxide-apatite gabbronorite) associated with massif anorthosite. Economic Geology 96, 797815.Google Scholar
Elliott, T., Plank, T., Zindler, A., White, W. & Bourdon, B. 1997. Element transport from slab to volcanic front at the Mariana arc. Journal of Geophysical Research 102, 14991–5019.Google Scholar
Emslie, R. F. 1985. Proterozoic anorthosite massifs. In The Deep Proterozoic Crust in the North Atlantic Provinces (eds Tobi, A. C. & Touret, J. L. R.), pp. 3960. NATOASI ser C.158. Dordrecht: Reidel.Google Scholar
Ernst, R. E. & Jowitt, S. M. 2013. Large igneous provinces (LIPS) and metallogeny. In Tectonics, Metallogeny, and Discovery: the North American Cordillera and Similar Accretionary Settings (eds Colpron, M., Bissig, T., Rusk, B. G & Thompson, J. F. H.), pp. 1751. Society of Economic Geologists Special Publication 17.Google Scholar
Eyuboglu, Y., Dilek, Y., Bozkurt, E., Bektas, O., Rojay, B. & Sen, C. 2010. Structure and geochemistry of an Alaskan-type ultramafic–mafic complex in the Eastern Pontides, NE turkey. Gondwana Research 18, 230–52.Google Scholar
Fan, W. M., Zhang, H. F., Baker, J., Jarvis, K. E., Mason, P. R. D. & Menzies, M. A. 2000. On and off the North China Craton: where is the Archean keel? Journal of Petrology 41, 933–50.Google Scholar
Foley, S. F., Jackson, S. E., Fryer, B. J., Greenouch, J. D. & Jenner, G. A. 1996. Trace element partition coefficients for clinopyroxene and phlogopite in an alkaline lamprophyre from Newfoundland by LAM–ICP–MS. Geochimica et Cosmochimica Acta 60, 629–38.Google Scholar
Furnes, H., de Wit, M. & Dilek, Y. 2014. Four billion years of ophiolites reveal secular trends in oceanic crust formation. Geoscience Frontiers 5, 571603.Google Scholar
Gao, S., Rudnick, R. L., Yuan, H. L., Liu, X. M., Liu, Y. S., Xu, W. L., Ling, W. L., Ayers, J., Wang, X. C. & Wang, Q. H. 2004. Recycling lower continental crust in the North China Craton. Nature 432, 892–97.Google Scholar
Gao, S., Rudnick, R. L., Xu, W. L., Yuan, H. L., Liu, Y. S., Walker, R. J., Puchtel, I. S., Liu, X., Huang, H., Wang, X. R. & Yang, J. 2008. Recycling deep cratonic lithosphere and generation of intraplate magmatism in the North China Craton. Earth and Planetary Science Letters 270, 4153.Google Scholar
Gao, X. Y., Zhao, T. P. & Chen, W. T. 2014. Petrogenesis of the early Cretaceous Funiushan granites on the southern margin of the North China Craton: implications for the Mesozoic geological evolution. Journal of Asian Earth Sciences 94, 2844.Google Scholar
Gasparik, T. & Litvin, Y. A. 2002. Experimental investigation of the effect of metasomatism by carbonatic melt on the composition and structure of the deep mantle. Lithos 60, 129–43.Google Scholar
Gibson, S. A. 2002. Major element heterogeneity in Archean to recent mantle plume starting-heads. Earth and Planetary Science Letters 195, 5974.Google Scholar
Gibson, S. A., Thompson, R. N. & Dickin, A. P. 2000. Ferropicrites: geochemical evidence for Fe-rich streaks in upwelling mantle plumes. Earth and Planetary Science Letters 174, 355–74.Google Scholar
Green, N. L. 2006. Influence of slab thermal structure on basalt source regions and melting conditions: REE and HFSE constraints from the Garibaldi volcanic belt, northern Cascadia subduction system. Lithos 87, 2349.Google Scholar
Griffin, W. L., Pearson, N. J., Belousova, E., Jackson, S. E., Van Achterbergh, E., O'Reilly, S. Y. & Shee, S. R. 2000. The Hf isotope composition of cratonic mantle: LA–MC–ICP–MS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta 64, 133–47.Google Scholar
Grove, T. L. & Baker, M. B. 1984. Phase equilibrium controls on the tholeiitic versus calc-alkaline differentiation trends. Journal of Geophysical Research 89, 3253–74.Google Scholar
Hammouda, T. 2003. High-pressure melting of carbonated eclogite and experimental constraints on carbon recycling and storage in the mantle. Earth and Planetary Science Letters 214, 357–68.Google Scholar
Hart, S. R. & Dunn, T. 1993. Experimental Cpx/melt partitioning of 24 trace elements. Contributions to Mineralogy and Petrology 113, 18.Google Scholar
Hart, S. R., Hauri, E. H., Oschmann, L. A. & Whitehead, J. A. 1992. Mantle plumes and entrainment: isotopic evidence. Science 256, 517–9.Google Scholar
Hauri, E. H., Wagner, T. P. & Grove, T. L. 1994. Experimental and natural partitioning of Th, U, Pb and other trace elements between garnet, clinopyroxene and basaltic melts. Chemical Geology 117, 149–66.Google Scholar
Helmy, H. M., Abd El-Rahman, Y. M., Yoshikawa, M., Shibata, T., Arai, S., Tamura, A. & Kagami, H. 2014. Petrology and Sm–Nd dating of the Genina Gharbia Alaskan-type complex (Egypt): insights into deep levels of Neoproterozoic island arcs. Lithos 198–199, 263–80.Google Scholar
Helmy, H. M. & El Mahallawi, M. M. 2003. Gabbro Akarem mafic–ultramafic complex, Eastern Desert, Egypt: a Late Precambrian analogue of Alaskan-type complexes. Mineralogy and Petrology 77, 85108.Google Scholar
Helmy, H. M., Yoshikawa, M., Shibata, T., Arai, S. & Kagami, H. 2015. Sm–Nd dating and petrology of Abu Hamamid intrusion, Eastern Desert, Egypt: a case of Neoproterozoic Alaskan-type complex in a backarc setting. Precambrian Research 258, 234–46.Google Scholar
Herzberg, C. 2006. Petrology and thermal structure of the Hawaiian plume from Mauna Kea volcano. Nature 444, 605–9.Google Scholar
Hirose, K. & Kushiro, I. 1993. Partial melting of dry peridotites at high pressures: determination of compositions of melts segregated from peridotite using aggregates of diamond. Earth and Planetary Science Letters 114, 477–89.Google Scholar
Hirschmann, M. M., Kogiso, T., Baker, M. B. & Stolper, E. M. 2003. Alkalic magmas generated by partial melting of garnet pyroxenite. Geology 31, 481–4.Google Scholar
Hofmann, A. W. 1988. Chemical differentiation of the earth: the relationship between mantle, continental crust and oceanic crust. Earth and Planetary Science Letters 90, 297314.Google Scholar
Hofmann, A. W. 1997. Mantle geochemistry: the message from oceanic volcanism. Nature 385, 219–29.Google Scholar
Hofmann, A. W., Jochum, K. P., Seufert, M. & White, W. M. 1986. Nb and Pb in oceanic basalts: new constraints on mantle evolution. Earth and Planetary Science Letters 79, 3345.Google Scholar
Howarth, G. H. & Prevec, S. A. 2013. Hydration vs. oxidation: modelling implications for Fe–Ti oxide crystallisation in mafic intrusions, with specific reference to the Panzhihua intrusion, SW China. Geoscience Frontiers 4, 555–69.Google Scholar
Huang, X. L., Zhong, J. W. & Xu, Y. G. 2012. Two tales of the continental lithospheric mantle prior to the destruction of the North China Craton: insights from Early Cretaceous mafic intrusions in western Shandong, East China. Geochimica et Cosmochimica Acta 96, 193214.Google Scholar
Ichiyama, Y. & Ishiwatari, A. 2005. HFSE-rich picritic rocks from the Mino accretionary complex, southwestern Japan. Contributions to Mineralogy and Petrology 149, 373–87.Google Scholar
Ichiyama, Y., Ishiwatari, A., Hirahara, Y. & Shuto, K. 2006. Geochemical and isotopic constraints on the genesis of the Permian ferropicritic rocks from the Mino-Tamba belt, SW Japan. Lithos 89, 4765.Google Scholar
Irvine, T. N. 1974. Petrology of the Duke Island ultramafic complex southeastern Alaska. Geological Society of America Memoirs 138, 1244.Google Scholar
Irvine, T. N. 1979. Rocks whose composition is determined by crystal accumulation and sorting. In The Evolution of the Igneous Rocks: Fiftieth Anniversary Perspectives (ed. Yoder, H.), pp. 245306. Princeton: Princeton University Press.Google Scholar
Ishii, S., Tsunogae, T. & Santosh, M. 2006. Ultrahigh-temperature metamorphism in the Achankovil Zone: implications for the correlation of crustal blocks in southern India. Gondwana Research 10, 99114.Google Scholar
Jiang, C., Jia, C., Li, L., Zhang, P., Lu, D. & Bai, K. 2004. Source of the Fe-riched-type high-Mg magma in Mazhartag region, Xinjiang. Acta Geologica Sinica 78, 770–80 (in Chinese with English abstract).Google Scholar
Jourdan, F., Bertrand, H., Schärer, U., Blichert-Toft, J., Fëraud, G. & Kampunzu, A. B. 2007. Major and trace elements and Sr, Nd, Hf, and Pb isotope compositions of the Karoo Large Igneous Province, Botswana-Zimbabwe: lithosphere vs mantle plume contribution. Journal of Petrology 48, 1043–77.Google Scholar
Jowitt, S. M. & Ernst, R. E. 2013. Geochemical assessment of the metallogenic potential of Proterozoic LIPs of Canada. Lithos 174, 291307.Google Scholar
Kerrich, R., Polat, A., Wyman, D. & Hollings, P. 1999. Trace element systematics of Mg-, to Fe-tholeiitic basalt suites of the Superior Province: implications for Archean mantle reservoirs and greenstone belt genesis. Lithos 46, 163–87.Google Scholar
Kerrich, R., Polat, A. & Xie, Q. L. 2008. Geochemical systematics of 2.7 Ga Kinojevis Group (Abitibi), and Manitouwadge and Winston Lake (Wawa) Fe-rich basalt-rhyolite associations: backarc rift oceanic crust? Lithos 101, 123.Google Scholar
King, S. D. 2005. Archean cratons and mantle dynamics. Earth and Planetary Science Letters 234, 114.Google Scholar
Kinnaird, J. A., Kruger, F. J., Nex, P. A. M. & Cawthorn, R. G. 2002. Chromitite formation–a key to understanding processes of platinum enrichment. Applied Earth Science, Transactions of the Institutions of Mining and Metallurgy: Section B 111, 2335.Google Scholar
Klemme, S., Blundy, J. D. & Wood, B. J. 2002. Experimental constraints on major and trace element partitioning during partial melting of eclogite. Geochimica et Cosmochimica Acta 66, 3109–23.Google Scholar
Kogarko, L. N., Kurat, G. & Ntaflos, T. 2001. Carbonate metasomatism of the oceanic mantle beneath Fernando de Noronha Island, Brazil. Contributions to Mineralogy and Petrology 140, 577–87.Google Scholar
Kogiso, T., Hirschmann, M. M. & Frost, D. J. 2003. High pressure partial melting of garnet pyroxenite: possible mafic lithologies in the source of ocean island basalts. Earth and Planetary Science Letters 216, 603–17.Google Scholar
La Flèche, M. R., Camire, G. & Jenner, G. A. 1998. Geochemistry of post-Acadian, Carboniferous continental intraplate basalts from the Maritimes basin, Magdalen islands, Quebec, Canada. Chemical Geology 148, 115–36.Google Scholar
Lassiter, J. C. & DePaolo, D. J. 1997. Plume/lithosphere interaction in the generation of continental and oceanic flood basalts: chemical and isotopic constraints. In Large Igneous Provinces, Continental, Oceanic and Planetary Flood Volcanism (eds. Mahoney, J.J., & Coffin, M.F.), pp. 335–55. American Geophysical Union, Geophysical Monograph vol. 100. Washington, DC, USA.Google Scholar
Le Roex, A. P., Class, C., O'Connor, J. & Jokat, W. 2010. Shona and discovery Aseismic Ridge Systems, South Atlantic: trace element evidence for enriched mantle sources. Journal of Petrology 51, 2089–120.Google Scholar
Leybourne, M. I., Van Wagoner, N. & Ayres, L. D. 1999. Partial melting of a refractory subducted slab in a Paleoproterozoic island arc: implications for global chemical cycles. Geology 27, 731–4.Google Scholar
Li, N. B., Niu, H. C., Bao, Z. W., Shan, Q., Yang, W. B., Jiang, Y. H. & Zeng, L. J. 2014 a. Geochronology and geochemistry of the Paleoproterozoic Fe-rich mafic sills from the Zhongtiao Mountains: petrogenesis and tectonic implications. Precambrian Research 255, 668–84.Google Scholar
Li, S. R. & Santosh, M. 2014. Metallogeny and craton destruction: records from the North China Craton. Ore Geology Reviews 56, 376414.Google Scholar
Li, S. S., Santosh, M., Cen, K., Teng, X. M. & He, X. F. 2016. Neoarchean convergent margin tectonics associated with microblock amalgamation in the North China Craton: evidence from the Yishui Complex. Gondwana Research 38, 113–31.Google Scholar
Li, S. R., Santosh, M., Zhang, H. F., Luo, J. Y., Zhang, J. Q., Li, C. L., Song, J. Y. & Zhang, X. B. 2014 b. Metallogeny in response to lithospheric thinning and craton destruction: geochemistry and U–Pb zircon chronology of the Yixingzhai gold deposit, central North China Craton. Ore Geology Reviews 56, 457–71.Google Scholar
Li, S. R., Santosh, M., Zhang, H. F., Shen, J. F., Dong, G. C., Wang, J. Z. & Zhang, J. Q. 2013. Inhomogeneous lithospheric thinning in the central North China Craton: zircon U–Pb and S–He–Ar isotopic record from magmatism and metallogeny in the Taihang Mountains. Gondwana Research 23, 141–60.Google Scholar
Li, S., Zhao, G., Dai, L., Liu, X., Zhou, L., Santosh, M. & Su, Y. 2012. Mesozoic basins in eastern China and their bearings on the deconstruction of the North China Craton. Journal of Asian Earth Sciences 47, 6479.Google Scholar
Ling, W. L., Duan, R. C., Xie, X. J., Zhang, Y. Q., Zhang, J. B., Cheng, J. P., Liu, X. M. & Yang, H. M. 2009. Contrasting geochemistry of the Cretaceous volcanic suites in Shandong province and its implications for the Mesozoic lower crust delamination in the eastern North China Craton. Lithos 113, 640–58.Google Scholar
Liu, S. W., , Y. J., Wang, W., Yang, P. T., Bai, X. & Feng, Y. G. 2011. Petrogenesis of the Neoarchean granitoid gneisses in northern Hebei Province. Acta Petrologica Sinica 27, 909–21 (in Chinese with English abstract).Google Scholar
Liu, D., Zhao, Z., Zhu, D. C., Niu, Y., Depaolo, D. J., Harrison, T. M., Mo, X., Dong, G., Zhou, S., Sun, C., Zhang, Z. & Liu, J. 2014. Postcollisional potassic and ultrapotassic rocks in southern Tibet: mantle and crustal origins in response to India–Asia collision and convergence. Geochimica et Cosmochimica Acta 143, 207–31.Google Scholar
Liu, P. P., Zhou, M. F., Yan, D. P., Zhao, G. C., Su, S. G. & Wang, X. L. 2015. The Shangzhuang Fe-Ti oxide-bearing layered mafic intrusion, northeast of Beijing (North China): implications for the mantle source of the giant Late Mesozoic magmatic event in the North China Craton. Lithos 231, 115.Google Scholar
McDonough, W. F. 1990. Constraints on the composition of the continental lithospheric mantle. Earth and Planetary Science Letters 101, 118.Google Scholar
McDonough, W. F. & Sun, S. S. 1995. The composition of the Earth. Chemical Geology 120, 223–54.Google Scholar
McKenzie, D. & O'Nions, R. K. 1991. Partial melt distribution from inversion of rare earth element concentrations. Journal of Petrology 32, 1021–91.Google Scholar
Menzies, M. A., Fan, W. M. & Zhang, M. 1993. Palaeozoic and Cenozoic lithoprobes and loss of >120 km of Archean lithosphere, Sino-Korean craton, China. In Magmatic Processes and Plate Tectonics (eds Prichard, H. M., Alabaster, T., Harris, N. B. W. & Neary, C. R.), pp. 7181. Geological Society of London, Special Publication no. 76.120+km+of+Archean+lithosphere,+Sino-Korean+craton,+China.+In+Magmatic+Processes+and+Plate+Tectonics+(eds+Prichard,+H.+M.,+Alabaster,+T.,+Harris,+N.+B.+W.+&+Neary,+C.+R.),+pp.+71–81.+Geological+Society+of+London,+Special+Publication+no.+76.>Google Scholar
Menzies, M. A., Xu, Y. G., Zhang, H. F. & Fan, W. M. 2007. Integration of geology, geophysics and geochemistry: a key to understanding the North China Craton. Lithos 96, 121.Google Scholar
Morse, S. A. 1968. Layered intrusions and anorthosite genesis. In Origin of Anorthosite and Related Rocks (ed. Isachsen, Y. W.), pp. 175–87. New York State Museum and Science Memoir 18.Google Scholar
Naldrett, A. J. & von Gruenewaldt, G. 1989. Association of platinum-group elements with chromitite in layered intrusions and ophiolite complexes. Economic Geology 84, 180–87.Google Scholar
Neumann, E. R., Svensen, H., Galerne, C. Y. & Plamke, S. 2011. Multistage evolution of dolerites in the Karoo Large Igneous Province, Central South Africa. Journal of Petrology 52, 952–84.Google Scholar
Nyblade, A. A. 2001. Earth science: hard-cored continents. Nature 411, 38–9.Google Scholar
Pearce, J. A. 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 100, 1448.Google Scholar
Pearce, J. A. & Stern, R. J. 2006. Origin of back-arc basin margins: trace element and isotope perspectives. In Back-Arc Spreading Systems: Geological, Biological, Chemical, and Physical Interactions (Christie, D. M., Fisher, C. R., Lee, S.-M. & Givens, S.), pp. 6386. American Geophysical Union, Geophysical Monograph vol. 166. Washington, DC, USA.Google Scholar
Peate, D. W. 1997. The Paraná-Etendeka Province. In Large Igneous Provinces (eds Mahoney, J. J. & Coffin, M. F.), pp. 217–45. American Geophysical Union, Geophysical Monograph vol. 100. Washington, DC, USA.Google Scholar
Polat, A., Appel, P. W. U. & Fryer, B. J. 2011. An overview of the geochemistry of Eoarchean to Mesoarchean ultramafic to mafic volcanic rocks, SW greenland: implications for mantle depletion and petrogenetic processes at subduction zones in the early Earth. Gondwana Research 20, 255–83.Google Scholar
Polat, A. & Hofmann, A. W. 2003. Alteration and geochemical patterns in the 3.7–3.8 Ga Isua greenstone belt, West Greenland. Precambrian Research 126, 197218.Google Scholar
Reubi, O., Sims, K. W. W. & Bourdan, B. 2014. 238U–230Th equilibrium in arc magmas and implications for the time scales of mantle metasomatism. Earth and Planetary Science Letters 391, 146–58.Google Scholar
Roeder, P. L. & Emslie, R. F. 1970. Olivine–liquid equilibrium. Contributions to Mineralogy and Petrology 29, 275–89.Google Scholar
Rudnick, R. L. 2005. Destruction of cratonic lithosphere: the North China Craton. In AGU Fall Meeting. AGU Fall Meeting Abstract #T22B-05.Google Scholar
Rudnick, R. L. & Gao, S. 2003. Composition of the continental crust. In The Crust Pergamon (ed. Rudnick, R. L.), pp. 164. Oxford: Elsevier.Google Scholar
Rudnick, R. L., Gao, S., Ling, W. L., Liu, Y. S. & McDonough, W. F. 2004. Petrology and geochemistry of spinel peridotite xenoliths from Hannuoba and Qixia, North China Craton. Lithos 77, 609–37.Google Scholar
Santosh, M. 2010. Assembling North China Craton within the Columbia supercontinent: the role of double-sided subduction. Precambrian Research 178, 149–67.Google Scholar
Santosh, M., Teng, X. M., He, X. F., Tang, L. & Yang, Q. Y. 2016. Discovery of Neoarchean suprasubduction zone ophiolite suite from Yishui Complex in the North China Craton. Gondwana Research 38, 127.Google Scholar
Santosh, M., Yang, Q. Y., Teng, X. M. & Tang, L. 2015. Paleoproterozoic crustal growth in the North China Craton: evidence from the Lüliang Complex. Precambrian Research 263, 197231.Google Scholar
Saunders, A. D., Storey, M., Kent, R. W. & Norry, M. J. 1992. Consequences of plume–lithosphere interactions. In Magmatism and the Causes of Continental Break-up (eds Alabaster, T., Storey, B.C. & Pankhurst, R.J.), pp. 4160. Geological Society of London, Special Publication no. 68.Google Scholar
Seo, J., Oh, C. W., Choi, S. G. & Rajesh, V. J. 2013. Two ultramafic rock types in the Hongseong area, South Korea: tectonic significance for northeast Asia. Lithos 175–176, 30–9.Google Scholar
Shapiro, S. S., Hager, B. H. & Jordan, T. H. 1999. Stability and dynamics of the continental tectosphere. Lithos 48, 115–33.Google Scholar
Sisson, T. W., Grove, T. L. & Coleman, D. S. 1996. Hornblende gabbro sill complex at Onion Valley, California, and a mixing origin for the Sierra Nevada batholith. Contributions to Mineralogy and Petrology 126, 81108.Google Scholar
Skovgaard, A. C., Storey, M., Baker, J., Blusztajn, J. & Hart, S. R. 2001. Osmium–oxygen isotopic evidence for a recycled and strongly depleted component in the Iceland mantle plume. Earth and Planetary Science Letters 194, 259–75.Google Scholar
Slagstad, T., Jamieson, R. A. & Culshaw, N. G. 2005. Formation, crystallization, and migration of melt in the midorogenic crust: Muskoka Domain migmatites, Grenville Province, Ontario. Journal of Petrology 46, 893919.Google Scholar
Smith, T. E., Huang, C. H., Walawender, M. J., Cheung, P. & Wheeler, C. 1983. The gabbroic rocks of the Peninsular Ranges batholith, southern California: cumulate rocks associated with calc-alkalic basalts and andesites. Journal of Volcanology and Geothermal Research 18, 249–78.Google Scholar
Sobolev, A. V., Hofmann, A. W., Sobolev, S. V. & Nikogosian, I. K. 2005. An olivine-free mantle source of Hawaiian shield basalts. Nature 434, 590–97.Google Scholar
Söderlund, U., Patchett, P. J., Vervoort, J. D. & Isachsen, C. E. 2004. The 176Lu decay constant determined by Lu–Hf and U–Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary Science Letters 219, 311–24.Google Scholar
Spandler, C., Yaxley, G., Green, D. H. & Rosenthal, A. 2008. Phase relations and melting of anhydrous K-bearing eclogite from 1200 to 1600°C and 3 to 5 GPa. Journal of Petrology 49, 771–95.Google Scholar
Su, S. G., Deng, J. F., Zhao, G. C., Zhao, X. G. & Liu, C. 2006. Characteristics, origin and resource property of Xuejiashiliang Complex, Beijing area and their relationship with the way of lithospheric thinning. Earth Science Frontiers 13, 148–57.Google Scholar
Su, S. G., Niu, Y. L., Deng, J. F., Liu, C., Zhao, G. C. & Zhao, X. G. 2007. Petrology and geochronology of Xuejiashiliang igneous complex and their genetic link to the lithospheric thinning during the Yanshanian orogenesis in eastern China. Lithos 96, 90107.Google Scholar
Su, B. X., Qin, K. Z., Sun, H., Tang, D. M., Sakyi, P. A., Chu, Z. Y., Liu, P. P. & Xiao, Q. H. 2012. Subduction-induced mantle heterogeneity beneath Eastern Tianshan and Beishan: insights from Nd–Sr–Hf–O isotopic mapping of Late Paleozoic mafic–ultramafic complexes. Lithos 134–135, 4151.Google Scholar
Sun, S. S. & McDonough, W. F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and process. In Magmatism in the Ocean Basin (Saunders, A. D. & Nony, M. J.), pp. 313–54. Geological Society of London, Special Publication no. 42.Google Scholar
Tang, L., Santosh, M., Tsunogae, T. & Teng, X. M. 2016. Late Neoarchean arc magmatism and crustal growth associated with microblock amalgamation in the North China Craton: evidence from the Fuping complex. Lithos 248, 324–38.Google Scholar
Temizel, I., Arslan, M., Ruffet, G. & Peucat, J. J. 2012. Petrochemistry, geochronology and Sr–Nd isotopic systematics of the Tertiary collisional and post-collisional volcanic rocks from the Ulubey (Ordu) area, eastern Pontide, NE Turkey: implications for extension-related origin and mantle source characteristics. Lithos 128, 126–47.Google Scholar
Teng, X. M. & Santosh, M. 2015. A long-lived magma chamber in the Paleoproterozoic North China Craton: evidence from the Damiao gabbro–anorthosite suite. Precambrian Research 256, 79101.Google Scholar
Teng, X. M., Santosh, M., Tsunogae, T. & Tang, L. 2016. Magma chamber processes in Early Cretaceous Shangzhuang layered mafic intrusion from the North China Craton. Geological Journal, published online 30 August 2016. doi: 10.1002/gj.2856.Google Scholar
Teng, X. M., Yang, Q. Y. & Santosh, M. 2015. Devonian magmatism associated with arc-continent collision in the northern North China Craton: evidence from the Longwangmiao ultramafic intrusion in the Damiao area. Journal of Asian Earth Sciences 113, 626–43.Google Scholar
Tian, W., Chen, B., Liu, C. Q. & Zhang, H. F. 2007. Zircon U–Pb age and Hf isotopic composition of the Xiaozhangjiakou ultramafic pluton in northern Hebei. Acta Petrologica Sinica 23, 583–90 (in Chinese with English abstract).Google Scholar
Tollari, N., Barnes, S. J., Cox, R. A. & Nabil, H. 2008. Trace element concentrations in apatites from the Sept-Iles intrusion suite, Canada – implications for the genesis of nelsonites. Chemical Geology 252, 180–90.Google Scholar
van de Zedde, D. M. A. & Wortel, M. J. R. 2001. Shallow slab detachment as a transient source of heat at mid lithospheric depths. Tectonics 20, 868–82.Google Scholar
Vervoort, J. D. & Patchett, P. J. 1996. Behavior of hafnium and neodymium isotopes in the crust: constraints from Precambrian crustally derived granites. Geochimica et Cosmochimica Acta 60, 3717–33.Google Scholar
von Gruenewaldt, G. & Harmer, R. E. 1992. Chapter 5: Tectonic setting of Proterozoic layered intrusions with special reference to the Bushveld complex. In Developments in Precambrian Geology (ed Condie, K. C.), pp. 181213. Amsterdam: Elsevier.Google Scholar
Wager, L. R. & Brown, G. M. 1968. Layered Igneous Rock. Edinburgh: Oliver & Boyd, 588 pp.Google Scholar
Wallace, M. L., Jowitt, S. M. & Saleem, A. 2015. Geochemistry and petrogenesis of mafic-ultramafic suites of the Irindina Province, Northern Territory, Australia: implications for the Neoproterozoic to Devonian evolution of central Australia. Lithos 234–235, 6178.Google Scholar
Wang, Y. J., Fan, W. M., Zhang, Y. H., Guo, F., Zhang, H. F. & Peng, T. P. 2004. Geochemical, 40Ar/39Ar geochronological and Sr–Nd isotopic constraints on the origin of Paleoproterozoic mafic dikes from the southern Taihang Mountains and implications for the ca. 1800 Ma event of the North China Craton. Precambrian Research 135, 5577.Google Scholar
Wang, T., Guo, L., Zheng, Y., Donskaya, T., Gladkochub, D., Zeng, L., Li, J., Wang, Y. & Mazukabzov, A. 2012. Timing and processes of late Mesozoic mid-lower-crustal extension in continental NE Asia and implications for the tectonic setting of the destruction of the North China Craton: mainly constrained by zircon U–Pb ages from metamorphic core complexes. Lithos 154, 315–45.Google Scholar
Wang, Y. & Zhang, Q. 2001. A granitoid complex from Badaling area, North China: composition, geochemical characteristics and its implications. Acta Petrologica Sinica 17, 533–40 (in Chinese with English abstract).Google Scholar
Wilson, B. M. 1989. Igneous Petrogenesis: A Global Tectonic Approach. Berlin: Springer.Google Scholar
Wilson, M. 2001. Igneous Petrogenesis. London: Unwin Hyman.Google Scholar
Winchester, J. A. & Floyd, P. A. 1976. Geochemical magma type discrimination: application to altered and metamorphosed basic igneous rocks. Earth and Planetary Science Letters 28, 459–69.Google Scholar
Windley, B. F., Alexeiev, D., Xiao, W., Kröner, A. & Badarch, G. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, London 164, 3147.Google Scholar
Workman, R. K., Hart, S. R., Blusztajn, J., Jackson, M., Kurz, M. & Staudigel, H. 2003. Enriched mantle II: a new view from the Samoan hotspot. Geophysical Research Abstract 5, 13656.Google Scholar
Wu, F. Y., Li, X. H., Zheng, Y. F. & Gao, S. 2007. Lu–Hf isotopic systematics and their applications in petrology. Acta Petrologia Sinica 23, 185220 (in Chinese with English abstract).Google Scholar
Wu, F. Y., Lin, J. Q., Wilde, S. A., Zhang, X. O. & Yang, J. H. 2005. Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth and Planetary Science Letters 233, 103–19.Google Scholar
Xiao, W., Windley, B. F., Hao, J. & Zhai, M. G. 2003. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: termination of the central Asian orogenic belt. Tectonics 22, 1069. doi: 10.1029/2002TC001484.Google Scholar
Xiao, Y., Zhang, H. F., Fan, W. M., Ying, J. F., Zhang, J., Zhao, X. M. & Su, B. X. 2010. Evolution of lithospheric mantle beneath the Tan‒Lu fault zone, eastern North China Craton: evidence from petrology and geochemistry of peridotite xenoliths. Lithos 117, 229–46.Google Scholar
Xie, Q., Zhang, Z., Hou, T., Santosh, M., Jin, Z., Han, L. & Cheng, Z. 2015. Petrogenesis of the Zhangmatun gabbro in the Ji'nan complex, North China Craton: implications for skarn-type iron mineralization. Journal of Asian Earth Sciences 113, 1197–217.Google Scholar
Xu, Y. G., Huang, X. L., Ma, J. L., Wang, Y. B., Lizuka, Y., Xu, J. F., Wang, Q. & Wu, X. Y. 2004 a. Crust–mantle interaction during the tectono-thermal reactivation of the North China Craton: constraints from SHRIMP zircon U–Pb chronology and geochemistry of Mesozoic plutons from western Shandong. Contributions to Mineralogy and Petrology 147, 750–67.Google Scholar
Xu, Y. G., Ma, J. L., Huang, X. L., Lizuka, Y., Chung, S. L., Wang, Y. B. & Wu, X. Y. 2004 b. Early Cretaceous gabbroic complex from Yinan, Shandong Province: petrogenesis and mantle domains beneath the North China Craton. International Journal of Earth Sciences 93, 1025–41.Google Scholar
Xu, Y. G., Mei, H. J., Xu, J. F., Huang, X. L., Wang, Y. J. & Chung, S. L. 2003. Origin of two differentiation trends in the Emeishan flood basalts. Chinese Science Bulletin 48, 390–94.Google Scholar
Yang, Q. Y. & Santosh, M. 2015. Early Cretaceous magma flare-up and its implications on gold mineralization in the Jiaodong Peninsula, China. Ore Geology Reviews 65, 626–42.Google Scholar
Yang, Q. Y. & Santosh, M. 2017. The building of an Archean microcontinent: Evidence from the North China Craton. Gondwana Research, published online 24 January 2017. doi: 10.1016/j.gr.2017.01.003.Google Scholar
Yang, Q. Y., Santosh, M., Collins, A. S. & Teng, X. M. 2016. Microblock amalgamation in the North China Craton: evidence from Neoarchaean magmatic suite in the western margin of the Jiaoliao Block. Gondwana Research 31, 96123.Google Scholar
Yang, Q. Y., Santosh, M., Shen, J. F. & Li, S. R. 2014. Juvenile vs. recycled crust in NE china: zircon U–Pb geochronology, Hf isotope and an integrated model for Mesozoic gold mineralization in the Jiaodong Peninsula. Gondwana Research 25, 1445–68.Google Scholar
Yang, J. H., Wu, F. Y., Chung, S. L., Lo, C. H., Wilde, S. A. & Davis, G. A. 2007. Rapid exhumation and cooling of the Liaonan metamorphic core complex: inferences from 40Ar/39Ar thermochronology and implications for Late Mesozoic extension in the eastern North China Craton. Geological Society of America Bulletin 119, 1405–14.Google Scholar
Yang, J. H., Wu, F. Y., Chung, S. L., Wilde, S. A. & Chu, M. F. 2006a. A hybrid origin for the Qianshan A-type granite, northeast China: geochemical and Sr–Nd–Hf isotopic evidence. Lithos 89, 89106.Google Scholar
Yang, J. H., Wu, F. Y., Chung, S. L., Wilde, S. A., Chu, M. F., Lo, C. H. & Song, B. 2005. Petrogenesis of Early Cretaceous intrusions in the Sulu ultrahigh-pressure orogenic belt, east China and their relationship to lithospheric thinning. Chemical Geology 222, 200–31.Google Scholar
Yang, J. H., Wu, F. Y., Shao, J. A., Xie, L. W. & Liu, X. M. 2006b. In-situ U–Pb dating and Hf isotopic analyses of zircons from volcanic rocks of the Houcheng and Zhangjiakou Formations in the Zhuang–Xuan area, northeast China. Earth Science–Journal of China University of Geosciences 31, 7180 (in Chinese with English abstract).Google Scholar
Yang, D. B., Xu, W. L., Pei, F. P., Yang, C. H. & Wang, Q. H. 2012. Spatial extent of the influence of the deeply subducted South China Block on the southeastern North China Block: constraints from Sr–Nd–Pb isotopes in Mesozoic mafic igneous rocks. Lithos 136, 246–60.Google Scholar
Ying, J. F., Zhang, H. F., Kita, N., Morishita, Y. & Shimoda, G. 2006. Nature and evolution of Late Cretaceous lithospheric mantle beneath the eastern North China Craton: constraints from petrology and geochemistry of peridotitic xenoliths from Junan, Shandong Province, China. Earth and Planetary Science Letters 244, 622–38Google Scholar
Yuan, H. L., Gao, S., Liu, X. M., Li, H. M., Gunther, D. & Wu, F. Y. 2004. Accurate U–Pb age and trace element determination of zircon by laser ablation-inductively coupled plasma-mass spectrometry. Geostandards and Geoanalytical Research 28, 353–70.Google Scholar
Zhai, M. G. & Santosh, M. 2011. The early Precambrian odyssey of the North China Craton: a synoptic overview. Gondwana Research 20, 625.Google Scholar
Zhang, H. F., Sun, M., Zhou, M. F., Fan, W. M., Zhou, X. H. & Zhai, M. G. 2004. Highly heterogeneous Late Mesozoic lithospheric mantle beneath the North China Craton: evidence from Sr–Nd–Pb isotopic systematics of mafic igneous rocks. Geological Magazine 141, 5562.Google Scholar
Zhang, H. F., Sun, M., Zhou, X. H., Zhou, M. F., Fan, W. M. & Zheng, J. P. 2003. Secular evolution of the lithosphere beneath the eastern North China Craton: evidence from Mesozoic basalts and high-Mg andesites. Geochimica et Cosmochimica Acta 67, 4373–87.Google Scholar
Zhang, H. F. & Yang, Y. H. 2007. Emplacement age and Sr–Nd–Hf isotopic characteristics of the diamondiferous kimberlites from the eastern North China Craton. Acta Petrologica Sinica 23, 285–94 (in Chinese with English abstract).Google Scholar
Zhang, S. H., Zhao, Y., Davis, G. A., Ye, H. & Wu, F. 2014. Temporal and spatial variations of Mesozoic magmatism and deformation in the North China Craton: implications for lithospheric thinning and decratonization. Earth-Science Reviews 131, 4987.Google Scholar
Zhang, S. H., Zhao, Y., Kröner, A., Liu, X. M., Xie, L. W. & Chen, F. K. 2009 a. Early Permian plutons from the northern North China Block: constraints on continental arc evolution and convergent margin magmatism related to the Central Asian Orogenic Belt. International Journal of Earth Sciences 98, 1441–67.Google Scholar
Zhang, S. H., Zhao, Y., Liu, X. C., Liu, D. Y., Chen, F., Xie, L. W. & Chen, H. H. 2009 b. Late Paleozoic to Early Mesozoic mafic–ultramafic complexes from the northern North China Block: constraints on the composition and evolution of the lithospheric mantle. Lithos 110, 229–46.Google Scholar
Zhang, S. H., Zhao, Y., Song, B. & Liu, D. Y. 2007. Petrogenesis of the Middle Devonian Gushan diorite pluton on the northern margin of the North China block and its tectonic implications. Geological Magazine 144, 553–68.Google Scholar
Zhao, G. C., Sun, M., Wilde, S. A. & Li, S. Z. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited. Precambrian Research 136, 177202.Google Scholar
Zhao, G. C. & Zhai, M. G. 2013. Lithotectonic elements of Precambrian basement in the North China Craton: review and tectonic implications. Gondwana Research 23, 1207–40Google Scholar
Zheng, J. P., O'Reilly, S. Y., Griffin, W. L., Lu, F. X., Zhang, M. & Pearson, N. J. 2001. Relict refractory mantle beneath the eastern North China block: significance for lithosphere evolution. Lithos 57, 4366.Google Scholar
Zheng, J. P., Sun, M., Zhou, M. F. & Robinson, P. 2005. Trace elemental and PGE geochemical constraints of Mesozoic and Cenozoic peridotitic xenoliths on lithospheric evolution of the North China Craton. Geochimica et Cosmochimica Acta 69, 3401–18.Google Scholar
Zhu, Y., Guo, X., Song, B., Zhang, L. & Gu, L. 2009. Petrology, Sr–Nd–Hf isotopic geochemistry and zircon chronology of the Late Paleozoic volcanic rocks in the southwestern Tianshan Mountains, Xinjiang, NW China. Journal of Geological Society, London 166, 1085–99.Google Scholar
Supplementary material: File

Teng supplementary material

Table S1

Download Teng supplementary material(File)
File 298.5 KB