Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T04:16:02.151Z Has data issue: false hasContentIssue false

Dolomitization and synsedimentary salt tectonics: the Upper Cretaceous Cueva Formation at El Ribero, northern Spain

Published online by Cambridge University Press:  07 April 2017

F. Garcia-Garmilla
Affiliation:
Departamento de Mineralogía y Petrología, Universidad del País Vasco, 48080 Bilbao, Spain
J. Elorza
Affiliation:
Departamento de Mineralogía y Petrología, Universidad del País Vasco, 48080 Bilbao, Spain

Abstract

Dolomites formed in upper Turonian–lower Coniacian Cueva Formation carbonates in the El Ribero area (Burgos province, northern Spain) have been investigated. Carbonate banks up to 30 m thick are massive or poorly structured along several kilometres, but at this location they contain clinoforms that dip away from the central area of the Rosío diapir, producing a dome-like structure. Three main diagenetic processes affected the El Ribero carbonates: silicification, dolomitization and subsequent dedolomitization. Silicification was mainly early, producing chert nodules from Thalassinoides burrows and replacing anhydrite cauliflower-type geodes, converting them into quartz geodes and silicified fossils (corals, echinoderms and oysters). Dolomite occurs immediately below the first order Coniacian Sequence Boundary (CSB) and is restricted to the diapiric area of influence. The dolomite has a flat top, whereas its base is irregular, suggesting downward movement of dolomitic fluids. Isotopic data from the dolomite (δ18O=−3.4‰PDB and δ13C= 1.1‰PDB) are similar to values reported from both evaporative and mixing zone dolomite. Finally, an intense and locally destructive dedolomitization produced significant dissolution. This affected the unsilicified organisms, and was followed by the development of meteoric-water poikilotopic calcite cements and radiaxial calcite geodes infilling dissolution cavities (isotopic values for later calcite are δ18O=−7.4‰PDB and δ13C=−9.0‰PDB). In addition, palaeokarstic horizons formed as a result of diapiric uplifts that caused collapse structures and vugs of several centimetres in size infilled by laminated sediments. All these features suggest that the diapiric movements could have been synsedimentary and particularly active during the Cueva Formation deposition.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allan, J. R. & Matthews, R. K. 1982. Isotope signatures associated with early meteoric diagenesis. Sedimentology 29, 797817.CrossRefGoogle Scholar
Amiot, M. 1982. El Cretácico superior en la región Navarro–Cántabra. In El Cretácico de España (without editors), pp. 88111. Madrid: Universidad Complutense.Google Scholar
Amiot, M., Floquet, M. & Mathey, B. 1983. Relations entre les trois domaines de sédimentation du Crétacé Superieur. Mémoires Géologiques Université de Dijon 9, 169–76.Google Scholar
Arthur, M. A., Dean, W. E. & Schlanger, S. O. 1985. Variations in the global carbon cycle during the Cretaceous related to climate, volcanism, and changes in atmospheric Co2 In The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present (eds Sundquist, E. T. and Broecker, W. S.), pp. 504–29. Washington: American Geophysical Union.Google Scholar
Barron, E. J. & Washington, W. M. 1982. Cretaceous climate: comparison of atmospheric simulations with the geologic record. Palaeogeography, Palaeoclimatology, Palaeoecology 40, 103–33.CrossRefGoogle Scholar
Boselune, A. 1984. Progradation geometries of carbonate platforms: examples from the Triassic of the Dolomites, northern Italy. Sedimentology 31, 124.CrossRefGoogle Scholar
Brachert, T. C. 1991. Environmental control on fossilization of siliceous sponge assemblages: a proposal. In Fossil and Recent Sponges (eds Reitner, J. and Keupp, H.), pp. 543–53. Berlin: Springer Verlag.CrossRefGoogle Scholar
Burns, S. J. & Rossinsky, V. Jr. 1989. Late Pleistocene mixing zone dolomitization, southeastern Barbados, West Indies. Sedimentology 36, 1135–42.CrossRefGoogle Scholar
Calvet, F., Tucker, M. E.Henton, J. M. 1990. Middle Triassic carbonate ramp systems in the Catalan Basin, northeast Spain: facies, systems tracts, sequences and controls In Carbonate Platforms: Fades, Sequences and Evolution (eds Tucker, M. E., Wilson, J. L., Crevello, P. D., Sarg, J. R. and Read, J. F.), pp. 79108. International Association of Sedimentologists, Special Publication no. 9.Google Scholar
Chanda, S. K., Bhattacharyya, A. & Sarkar, S. 1976. Early diagenetic chert nodules in Bhander Limestone, Maihar, Satna District, Madhya Pradesh, India. Journal of Geology 84, 213–24.CrossRefGoogle Scholar
Chowns, T. M. & Elkins, J. E. 1974. The origin of quartz geodes and cauliflower cherts through the silicification of anhydrite nodules. Journal of Sedimentary Petrology 44, 885903.Google Scholar
Coniglio, M., James, N. P. & Aissaoui, D. M. 1988. Dolomitization of Miocene carbonates, Gulf of Suez, Egypt. Journal of Sedimentary Petrology 58, 100–19.Google Scholar
Craig, H. 1957. Isotopic standards for carbon and oxygen and correction factors for mass spectrometric analysis of carbon dioxide. Geochimica Cosmochimica Acta 12, 133–49.CrossRefGoogle Scholar
Dunham, J. B. & Olson, E. R. 1980. Shallow subsurface dolomitization of subtidally deposited carbonate sediments in the Hanson Creek Formation (Ordovician–Silurian) of Central Nevada. In Concepts and Models of Dolomitization (eds Zenger, D. H., Dunham, J. B. and Ethington, R. L.), pp. 139–61. Society of Economic Paleontologists and Mineralogists, Special Publication no. 28.CrossRefGoogle Scholar
Elorza, J. & Garcia-Garmilla, F. 1993. Chert appearance in the Cueva–Bedón carbonate platform (Upper Cretaceous, Northern Spain). Geological Magazine 130, 805–16.CrossRefGoogle Scholar
Elorza, J. & Garcia-Garmilla, F. 1994. Chert Types in the Cueva Carbonate Platform (Upper Cretaceous, Northern Spain). In Siliceous Rocks and Culture (eds Ramos-Millán, A. and Bustillo, M. A.), pp. 117. Granada: Servicio de Publicaciones de la Universidad de Granada – C.S.I.C.Google Scholar
Elorza, J., Garcia-Garmilla, F., Arriortua, M. I. & Bustillo, M. A. 1991. Chert in Marine Environments. In Marine and Continental Facies with Siliceous Sedimentary Rocks (eds Elorza, J. and Bustillo, M. A.), pp. 192. Madrid: VI International Flint Symposium, Excursion Guidebook.Google Scholar
Elorza, J. & Rodriguez-Lazaro, J. 1984 a. Late Cretaceous quartz geodes after anhydrite from Burgos, Spain. Geological Magazine 121, 107–13.CrossRefGoogle Scholar
Elorza, J. & Rodriguez-Lazaro, J. 1984 b. Existencia de estructuras nodulosas de celestina afectadas por silicificación en el Valle de Losa (N. de Burgos). Estudios Geológicos 40, 41–8.CrossRefGoogle Scholar
Elorza, J. & Rodriguez-Lazaro, J. 1987. Quartz geodes with celestite and calcite after anhydrite from Langre (Santander, Spain). In Proceedings of the International Meeting ‘Geochemistry of the Earth Surface and Processes of Mineral Formation’ (eds Rodríguez-Clemente, R. and Tardy, Y.), pp. 837–47. Granada: C.S.I.C. and C.N.R.S.Google Scholar
Feuillee, P. & Rat, P. 1971. Structures et paléogeographies Pyrénéo–Cantabriques. In Histoire Structurale du Golfe de Gascogne (without editors), pp. V.1.1V.1.48. Paris: Technip.Google Scholar
Floquet, M. 1991. La Plate-forme Nord-Castillaine au Crétacé superieur (Espagne). Arriére-pays ibérique de la marge passive basco-cantabrique. Sédimentation et Vie. Mémoires Géologiques Université de Dijon 14, 1925.Google Scholar
Floquet, M. 1992. Outcrop sequence stratigraphy in a ramp setting: the late Cretaceous–early Paleogene deposits of the Castilian Ramp (Spain). Field-trip Guide Book. International Symposium Sequence Stratigraphy of Mesozoic–Cenozoic European Basins, Dijon, France, 130 pp.Google Scholar
Floquet, M., Alonso, A. & Melendez, A. 1982. El Cretácico superior en la Meseta Norcastellana. In El Cretádco de España (without editors), pp. 387453. Madrid: Universidad Complutense.Google Scholar
Folk, R. L. & Land, L. S. 1975. Mg/Ca ratio and salinity: two controls over crystallization of dolomite. American Association of Petroleum Geologists Bulletin 59, 60–8.Google Scholar
Folk, R. L. & Siedlecka, A. 1974. The ‘schizohaline’ environment: its sedimentary and diagenetic fabrics as exemplified by late Paleozoic rocks of Bear Island, Svalbard. Sedimentary Geology 11, 115.CrossRefGoogle Scholar
Francis, J. E. & Frakes, L. A. 1993. Cretaceous climates. In Sedimentology Review: 1 (eds Wright, V. P. and members of the Postgraduate Research Institute for Sedimentology), pp. 1730. University of Reading: Blackwell Scientific Publications.CrossRefGoogle Scholar
Garcia-Garmilla, F. & Elorza, J. 1991. Sedimentary and petrological evidence for depositional sequences in the EI Ribero carbonate platform (upper Cretaceous, Basque–Cantabrian Region, Northern Spain). 12th International Association of Sedimentologists Regional Meeting.Bergen. Abstract Book, 20.Google Scholar
Gebelein, C. D., Steinen, R. P., Garrett, P., Hoffmann, E. J., Queen, J. M. & Plummer, L. N. 1980. Subsurface dolomitization beneath the tidal flats of central–west Andros Island, Bahamas. In Concepts and Models of Dolomitization (eds Zenger, D. H., Dunham, J. B. and Ethington, R. L.), pp. 3149. Society of Economic Paleontologists and Mineralogists Special Publication no. 28.CrossRefGoogle Scholar
Geeslin, J. H. & Chafetz, H. S. 1982. Ordovician Aleman ribbon cherts: an example of silicification prior to carbonate lithification. Journal of Sedimentary Petrology 52, 1283–93.Google Scholar
Gräfe, K.-U. & Wiedmann, J. 1993. Sequence stratigraphy in the Upper Cretaceous of the Basco-Cantabrian Basin (northern Spain). Geologische Rundschau 82, 327–61.CrossRefGoogle Scholar
Gregg, J. M. & Sibley, D. F. 1984. Epigenetic dolomitization and the origin of xenotopic dolomite texture. Journal of Sedimentary Petrology 54, 908–31.Google Scholar
Gregg, J. M., Howard, S. A. & Mazzullo, S. J. 1992. Early diagenetic recrystallization of Holocene (< 3000 years old) peritidal dolomites, Ambergris Cay, Belize. Sedimentology 39, 143–60.CrossRefGoogle Scholar
Haq, B. U., Hardenbol, J. & Vail, P. R. 1988. Mesozoic and Cenozoic chronostratigraphy and cycles of sea-level change. In Sea-Level Changes: An Integrated Approach (eds Wilgus, Ch. K., Hastings, B. S., Kendall, Ch. G. St. C., Posamentier, H. W., Ross, Ch. A. and Van Wagoner, J. C.), pp. 73108. Society of Economic Paleontologists and Mineralogists Special Publication no. 42.Google Scholar
Hardie, L. A. 1987. Perspectives: dolomitization – a critical view of some current views. Journal of Sedimentary Petrology 57, 166–83.CrossRefGoogle Scholar
Henton, J. 1991. Geochemical constraints on uplift-related calcitization of Triassic Dolomites in the Catalan Basin, Northeast Spain. In Dolomieu Conference on Carbonate Platforms and Dolomitization (eds Bosellini, A., Brandner, R., Flügel, E., Purser, B., Schlager, W., Tucker, M. and Zenger, D.), p. 109. Abstract Book.Google Scholar
Humphrey, J. D. 1988. Late Pleistocene mixing zone dolomitization, southeastern Barbados, West Indies. Sedimentology 35, 327–48.CrossRefGoogle Scholar
Humphrey, J. D. & Quinn, T. M. 1989. Coastal mixing zone dolomite, forward modeling, and massive dolomitization of platform–margin carbonates. Journal of Sedimentary Petrology 59, 438–54.Google Scholar
Humphrey, J. D. & Quinn, T. M. 1990. Coastal mixing zone dolomite, forward modeling, and massive dolomitization of platform–margin carbonates – Reply. Journal of Sedimentary Petrology 60, 1013–6.Google Scholar
I.G.M.E., 1918. Mapa Geológico de España 1:50000. Hoja No. 85 (Villasana de Mena), map and memory, 32 pp.Google Scholar
Jenkyns, H. C. 1980. Cretaceous anoxic events: from continents to oceans. Journal of the Geological Society, London 137, 171–88.CrossRefGoogle Scholar
Kenny, R. 1992. Origin of disconformity dedolomite in the Martin Formation (Late Devonian, northern Arizona). Sedimentary Geology 78, 137–46.CrossRefGoogle Scholar
Kitano, Y., Kanamore, M. & Oomori, T. 1971. Measurements of distribution coefficients of strontium and barium between carbonate precipitate and solution: abnormally high value of distribution coefficients at early stages of carbonate formation. Geochemical Journal 4, 183206.CrossRefGoogle Scholar
Kupecz, J. A. & Land, L. S. 1994. Progressive recrystallization and stabilization of early-stage dolomite: Lower Ordovician Ellenburger Group, west Texas. In Dolomites: A volume in honour of Dolomieu (eds Purser, B., Tucker, M. and Zenger, D.), pp. 255–79. Blackwell Scientific Publications. International Association of Sedimentologists, Special Publication no. 21.CrossRefGoogle Scholar
Land, L. S. 1991. Dolomitization of the Hope Gate Formation (north Jamaica) by seawater: reassessment of mixing-zone dolomite. In Stable Isotope Geochemistry: A Tribute to Samuel Epstein (eds Taylor, H. P., O'Neil, J. R. and Kaplan, I. R.), pp. 121–33. The Geochemical Society Special Publication no. 3.Google Scholar
Land, L. S., Salem, M. R. I. & Morrow, D. W. 1975. Paleohydrology of ancient dolomites: geochemical evidence. American Association of Petroleum Geologists Bulletin 59, 1602–25.Google Scholar
Machel, H. G. & Burton, E. A. 1994. Golden Grove Dolomite, Barbados: origin from modified seawater. Journal of Sedimentary Research A64, 741–51.Google Scholar
Machel, H. G., Mason, R. A., Mariano, A. N. & Mucci, A. 1991. Causes and emission of luminescence in calcite and dolomite. In Luminescence Microscopy and Spectroscopy: Qualitative and Quantitative Applications (eds Barker, Ch. E. and Kopp, O. C.), pp. 925. Society of Economic Paleontologists and Mineralogists Short Course no. 25.Google Scholar
Machel, H. G. & Mountjoy, E. W. 1990. Coastal mixing zone dolomite, forward modelling, and massive dolomitization of platform-margin carbonates – Discussion. Journal of Sedimentary Petrology 60, 1008–12.CrossRefGoogle Scholar
Maliva, R. G. 1987. Quartz geodes: early diagenetic silicified anhydrite nodules related to dolomitization. Journal of Sedimentary Petrology 57, 1054–9.Google Scholar
Mattes, B. W. & Mountjoy, E. W. 1980. Burial dolomitization of the Upper Devonian Miette Buildup, Jasper National Park, Alberta. In Concepts and Models of Dolomitization (eds Zenger, D. H., Dunham, J. B. and Ethington, R. L.), pp. 259–97. Society of Economic Paleontologists and Mineralogists, Special Publication no. 28.CrossRefGoogle Scholar
Mazzullo, S. J., Bischoff, W. D. & Lobitzer, H. 1990. Diagenesis of radiaxial fibrous calcites in a subunconformity, shallow burial setting: Upper Triassic and Liassic, Northern Calcareous Alps, Austria. Sedimentology 37, 407–25.CrossRefGoogle Scholar
McCrea, J. M. 1950. On the isotopic chemistry of carbonates and a paleotemperature scale. Journal of Chemical Physics 18, 849–57.CrossRefGoogle Scholar
Minguez, J. M. & Elorza, J. 1994. Diagenetic volume-for-volume replacement: force of crystallization and depression of dissolution. Mineralogical Magazine 58, 133–40.CrossRefGoogle Scholar
Misik, M. 1993. Carbonate rhombohedra in nodular cherts: Mesozoic of the west Carpathians. Journal of Sedimentary Petrology 63, 275–81.Google Scholar
Morrow, D. W. 1990 a. Dolomite – Part 1: The chemistry of dolomitization and dolomite precipitation. In Diagenesis (eds McIlreath, I. A. and Morrow, D. W.), pp. 113–24. Geoscience Canada Reprint Series no. 4.Google Scholar
Morrow, D. W. 1990 b. Dolomite – Part 2: Dolomitization Models and Ancient Dolostones. In Diagenesis (eds McIlreath, I. A. and Morrow, D. W.), pp. 125–39. Geoscience Canada Reprint Series no. 4.Google Scholar
Mum, M. & Simo, T. 1994. Distribution, petrography and geochemistry of early dolomite in cyclic shelf facies, Yates Formation (Guadalupian), Capitan Reef Complex, USA. In Dolomites: A volume in honour of Dolomieu (eds Purser, B., Tucker, M. and Zenger, D.), pp. 91107. Blackwell Scientific Publications. International Association of Sedimentologists, Special Publication no. 21.Google Scholar
Pierre, C. & Rouchy, J.-M. 1988. Carbonate replacements after sulfate evaporites in the Middle Miocene of Egypt. Journal of Sedimentary Petrology 58, 446–56.Google Scholar
Sarg, J. F. 1988. Carbonate sequence stratigraphy. In Sea-Level Changes: An Integrated Approach, (eds Wilgus, Ch. K., Hastings, B. S., Kendall, Ch. G., Posamentier, H. W., Ross, Ch. A. and Van Wagoner, J. C.), pp. 155–82. Society of Economic Paleontologists and Mineralogists, Special Publication no. 42.CrossRefGoogle Scholar
Sass, E., Bein, A. & Almogi-Labin, A. 1991. Oxygen isotope composition of diagenetic calcite in organic–rich rocks: evidence for 18O depletion in marine anaerobic pore water. Geology 19, 839–42.2.3.CO;2>CrossRefGoogle Scholar
Sibley, D. F. & Gregg, J. M. 1987. Classification of dolomite rock textures. Journal of Sedimentary Petrology 57, 967–75.Google Scholar
Simo, A. 1989. Upper Cretaceous platform-to-basin depositional-sequence development, Tremp Basin, South-Central Pyrenees, Spain. In Controls on Carbonate Platform and Basin Development (eds Crevello, P. D., Wilson, J. L., Sarg, J. F. and Read, J. F.), pp. 365–78. Society of Economic Paleontologists and Mineralogists, Special Publication no. 44.CrossRefGoogle Scholar
Taberner, C. & Santisteban, C. 1987. Mixed-water dolomitization in a transgressive beach-ridge system, Eocene Catalan Basin, NE Spain. In Diagenesis of Sedimentary Sequences (ed. Marshall, J. D.), pp. 123–39. Geological Society, Special Publication no. 36.Google Scholar
Tucker, M. E. & Wright, V. P. 1990. Carbonate Sedimentology. Blackwell Scientific Publications, 482 pp.CrossRefGoogle Scholar
Tucker, M. E., Calvet, F., Henton, J., Marshall, J. & Spiro, B. 1991. Dolomitization related to sequence boundaries: the Triassic Muschelkalk Platforms of Eastern Spain. In Dolomieu Conference on Carbonate Platforms and Dolomitization (eds Bosellini, A., Brandner, R., Flügel, E., Purser, B., Schlager, W., Tucker, M. and Zenger, D.), p. 275. Abstract Book.Google Scholar
Vahrenkamp, V. C. & Swart, P. K. 1990. New distribution coefficient for the incorporation of strontium into dolomite and its implications for the formation of ancient dolomites. Geology 18, 387–91.2.3.CO;2>CrossRefGoogle Scholar
Whitaker, F. F., Smart, P. L., Vahrenkamp, V. C., Nicholson, H. & Wogelius, R. A. 1994. Dolomitization by near-normal seawater? Field evidence from the Bahamas. In Dolomites. A volume in honour of Dolomieu (eds Purser, B., Tucker, M. and Zenger, D.), pp. 111–32. Blackwell Scientific Publications. International Association of Sedimentologists, Special Publication no. 21.Google Scholar