Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-25T19:30:25.196Z Has data issue: false hasContentIssue false

Discussion on chemostratigraphy of predominantly siliciclastic Neoproterozoic successions: a case study of the Pocatello Formation and Lower Brigham Group, Idaho, USA

Published online by Cambridge University Press:  01 May 2009

G. Shields
Affiliation:
Institute of Geology, Sonneggstrasse 5, ETH-Zentrum, CH-8092 Zurich, Switzerland
L. H. Smith
Affiliation:
Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
A. J. Kaufman
Affiliation:
Botanical Museum, Harvard University, Cambridge, MA 02138, USA
A. H. Knoll
Affiliation:
Botanical Museum, Harvard University, Cambridge, MA 02138, USA
P. K. Link
Affiliation:
Department of Geology, Idaho State University, Pocatello, ID 83209, USA

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Discussion
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asmerom, Y., Jacobsen, S. B., Knoll, A. H., Butterfield, N. B., & Swett, K., 1991. Strontium isotopic variations of Neoproterozoic seawater: implications for crustal evolution. Geochimica et Cosmochimica Acta 55, 2883–94.CrossRefGoogle ScholarPubMed
Christie-Blick, N., & Levy, M., Eds. 1989. Late Proterozoic and Cambrian tectonics, sedimentation and record of early metazoan evolution in the western United States. Field Trip Guidebook T331, 28th International Geological Congress, Washington, D.C., American Geophysical Union.Google Scholar
Crittenden, M. D., Christie-Blick, N., & Link, P. K., 1983. Evidence for two pulses of glaciation during the late Proterozoic in northern Utah and southeastern Idaho. Bulletin, Geological Society of America 94, 437–50.2.0.CO;2>CrossRefGoogle Scholar
Derry, L. A., Keto, L. S., Jacobsen, S. B., Knoll, A. H., & Swett, K., 1989. Sr isotopic variations in Upper Proterozoic carbonates from Svalbard and East Greenland. Geochimica et Cosmochimica Acta 53, 2331–9.CrossRefGoogle ScholarPubMed
Derry, L. A., Kaufman, A. J., & Jacobsen, S. J., 1992. Sedimentary cycling and environmental change in the late Proterozoic: Evidence from stable and radiogenic isotopes. Geochimica et Cosmochimica Acta 56, 1317–29.CrossRefGoogle Scholar
Fairchild, I. J., & Spiro, B., 1987. Petrological and isotopic implications of some contrasting Late Precambrian carbonates, NE Spitsbergen. Sedimentology 34, 973–89.CrossRefGoogle Scholar
Fairchild, I. J., & Hambrey, M. J., 1984. The Vendian succession of northeastern Spitsbergen: petrogenesis of a dolomite-tillite association. Precambrian Research 26, 111–67.CrossRefGoogle Scholar
Fairchild, I. J., & Hambrey, M. J., 1995. Vendian basin evolution in East Greenland and NE Svalbard. Precambrian Research 73, 217–33.CrossRefGoogle Scholar
Grotzinger, J. P., Bowring, S. A., Saylor, B. Z., & Kaufman, A. J., 1995. New biostratigraphic and geochronologic constraints on early animal evolution. Science 270, 598604.CrossRefGoogle Scholar
Harland, W. B., Hambrey, M. J., & Waddams, P., 1993. Vendian geology of Svalbard. Norskpolarinstitut Skrifter 193, 1150.Google Scholar
Kaufman, A. J., & Knoll, A. H., 1995. Neoproterozoic variations in the carbon isotopic composition of seawater: Stratigraphic and biogeochemical implications. Precambrian Research 73, 27–9.CrossRefGoogle ScholarPubMed
Kaufman, A. J., Hayes, J. M., Knoll, A. H., & Germs, G. J. B., 1991. Isotopic compositions of carbonates and organic matter from upper Proterozoic successions in Namibia: stratigraphic variation and the effects of diagenesis and metamorphism. Precambrian Research 49, 301–27.CrossRefGoogle Scholar
Kaufman, A. J., Jacobsen, S. B., & Knoll, A. H., 1993. The Vendian record of Sr- and C-isotopic variations in seawater: Implications for tectonics and paleoclimate. Earth and Planetary Science Letters 120, 409–30.CrossRefGoogle Scholar
Kaufman, A. J., Knoll, A. H., Grotzinger, J. P., Semikhatov, M. A., Jacobsen, S. B., & Adams, W., 1996. Integrated chronostratigraphy of Proterozoic-Cambrian boundary beds, Western Anabar Uplift, Siberia. Geological Magazine in press.CrossRefGoogle Scholar
Kaufman, A. J., Knoll, A. H., & Awramik, S. M., 1992. Biostratigraphic and chemostratigraphic correlation of Neoproterozoic sedimentary successions: Upper Tindir Group, northwestern Canada, as a test case. Geology 20, 181–85.2.3.CO;2>CrossRefGoogle ScholarPubMed
Knoll, A. H., Hayes, J. M., Kaufman, A. J., Swett, K., & Lambert, I. B., 1986. Secular variation in carbon isotope ratios from upper Proterozoic successions of Svalbard and East greenland. Nature 321, 832–8.CrossRefGoogle ScholarPubMed
Knoll, A. H., Grotzinger, J. P., Kaufman, A. J., & Kolosov, P., 1995. Integrated approaches to terminal Proterozoic stratigraphy: An example from the Olenek Uplift, northeastern Siberia. Precambrian Research 79, 251–70.CrossRefGoogle Scholar
Levy, M., Christie-Blick, N., & Link, P. K., 1994. Neoproterozoic incised valleys of the eastern Great Basin, Utah and Idaho: fluvial response to changes in depositional base-level. SEPM Special Paper 51, 369–82.Google Scholar
Link, P. K., Christie-Blick, N., Devlin, W. J., Elston, D. P., Horodyski, R. J., Levy, M., Miller, J. M. G., Pearson, R. C., Prave, A., Stewart, J. H., Winston, D., Wright, L. A., & Wrucke, C. T., 1993. Middle and late Proterozoic stratified rocks of the western U.S. Cordillera, Colorado Plateau, and Basin and Range Province. In The Geology of North America, Vol. C-2 (eds Reed, J. C., Bickford, M. E., Houston, R. S., Link, P. K., Rankin, D. W., Sims, P. K. & Van Schmus, W. R.), pp. 463595. Boulder, Colorado: Geological Society of America.Google Scholar
Narbonne, G. M., Kaufman, A. J., & Knoll, A. H., 1994. Integrated chemostratigraphy and biostratigraphy of the upper Windermere Supergroup (Neoproterozoic), Mackenzie Mountains, northwestern Canada. Bulletin, Geological Society of America 106, 1281–92.2.3.CO;2>CrossRefGoogle ScholarPubMed
Pelechaty, S., Kaufman, A. J., & Grotzinger, J. P., 1996. Evaluation of δ13C chemostratigraphy for interbasinal correlations: Vendian strata of the Olenek Uplift and Kharaulakh Mountains, Siberian Platform, Russia. Bulletin, Geological Society of America, in press.2.3.CO;2>CrossRefGoogle Scholar
Peters, M. T., Wickham, S. M., & Miller, D. M., 1992. High δ13C Late Proterozoic carbonates of the North American cordillera. GSA Abstracts with programs A114.Google Scholar
Wickham, S. M., & Peters, M. T., 1993. High δ13C Neoproterozoic carbonate rocks in western North America. Geology 21, 165–8.2.3.CO;2>CrossRefGoogle Scholar
Smith, L. H., Kaufman, A. J., Knoll, A. H., & Link, P-K., 1994. Chemostratigraphy of predominantly siloclastic Neoproterozoic successions: a case study of the Pocatello Formation and Lower Brigham Group, Idaho, USA. Geological Magazine 131, 301–14.CrossRefGoogle ScholarPubMed
Veizer, J., Compston, W., Clauer, N., & Schidlowski, M., 1983. 87Sr/86Sr in late Proterozoic carbonates: evidence for a “mantle” event at ≈ 900 Ma ago. Geochimica et Cosmochimica Acta 47, 295302.CrossRefGoogle Scholar