Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-22T16:21:06.424Z Has data issue: false hasContentIssue false

Disaster microconchids from the uppermost Permian and Lower Triassic lacustrine strata of the Cis-Urals and the Tunguska and Kuznetsk basins (Russia)

Published online by Cambridge University Press:  13 January 2021

Dmitry E. Shcherbakov
Affiliation:
Borissiak Palaeontological Institute, Russian Academy of Sciences, Profsoyuznaya St 123, Moscow117647, Russia
Olev Vinn
Affiliation:
Institute of Ecology and Earth Sciences, University of Tartu, Ravila 14A, 50411, Tartu, Estonia
Andrey Yu. Zhuravlev*
Affiliation:
Department of Biological Evolution, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1(12), Moscow119234, Russia
*
Author for correspondence: Andrey Yu. Zhuravlev, Email: [email protected]

Abstract

We describe aggregative microconchid (Lophophorata) tubes from the uppermost Permian (upper Changhsingian) and Lower Triassic (Olenekian) lacustrine and fluvial strata of the Tunguska and Kuznetsk basins and the southern Cis-Urals, Russia. These attach to clam shrimp carapaces, bivalve shells, terrestrial plant fragments and a horseshoe crab head shield, and also form their own monospecific agglomerations. Planispiral tubes of a wide size range (0.1–2.5 mm) create dense settlements on these firm substrates, which likely comprise multiple generations of the same species. These finds confirm that this extinct lophophorate group was inhabiting non-marine continental basins during latest Permian and earliest Triassic time, when they were major suspension feeders in such limnic ecosystems. Microconchids dispersed extensively and rapidly in the aftermath of the Permian–Triassic mass extinction into both marine and continental basins at low and moderately high latitudes, which were notably different in salinity, temperature, depth and redox conditions. This confirms that small lightly calcified microconchids were a genuine disaster eurytopic group, whose expansion may have been promoted by low predator pressure and low competition for substrate.

Type
Original Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdolmaleki, J and Tavakoli, V (2016) Anachronistic facies in the Early Triassic successions of the Persian Gulf and its palaeoenvironmental reconstruction. Palaeogeography, Palaeoclimatology, Palaeoecology 446, 213–24.CrossRefGoogle Scholar
Adachi, N, Asada, Y, Ezaki, Y and Liu, J (2017) Stromatolites near the Permian-Triassic boundary in Chongyang, Hubei Province, South China: a geobiological window into paleo-oceanic fluctuations following the end-Permian extinction. Palaeogeography, Palaeoclimatology, Palaeoecology 475, 5569.CrossRefGoogle Scholar
Adachi, N, Ezaki, Y and Liu, J (2004) The fabrics and origins of peloids immediately after the end-Permian extinction, Guizhou Province, South China. Sedimentary Geology 164, 161–78.CrossRefGoogle Scholar
Algeo, TJ and Twitchett, RJ (2010) Anomalous Early Triassic sediment fluxes due to elevated weathering rates and their biological consequences. Geology 38, 1023–6.CrossRefGoogle Scholar
Aristov, DS (2011) New and little known Grylloblattida (Insecta) from intertrappean deposits of the Tunguska Basin of Siberia. Paleontological Journal 45, 537–45.CrossRefGoogle Scholar
Aristov, DS, Bashkuev, AS, Golubev, VK, Gorochov, AV, Karasev, EV, Kopylov, DS, Ponomarenko, AG, Rasnitsyn, AP, Rasnitsyn, DA, Sinitshenkova, ND, Sukatsheva, ID and Vassilenko, DV (2013) Fossil insects of the Middle and Upper Permian of European Russia. Paleontological Journal 47, 641832.CrossRefGoogle Scholar
Arratia, G (2004) Mesozoic halecostomes and the early radiation of teleosts. In Mesozoic Fishes 3 – Systematics, Paleoenvironments and Biodiversity (eds Arratia, G and Tintori, A), pp. 279315. München: Dr Friedrich Pfeil.Google Scholar
Bagherpour, B, Bucher, H, Baud, A, Brosse, M, Vennemann, T, Martini, R and Guodun, K (2017) Onset, development, and cessation of basal Early Triassic microbialites (BETM) in the Nanpanjiang pull-apart Basin, South China Block. Gondwana Research 44, 178204.CrossRefGoogle Scholar
Bajdek, P, Qvarnström, M, Owocki, K, Sulej, T, Sennikov, AG, Golubev, VK and Niedźwiedzki, G (2016) Microbiota and food residues including possible evidence of pre-mammalian hair in Upper Permian coprolites from Russia. Lethaia 49, 455–77.CrossRefGoogle Scholar
Ball, HW (1980) Spirorbis from the Triassic Bromsgrove Sandstone Formation (Sherwood Sandstone Group) of Bromsgrove, Worcestershire. Proceedings of Geologists’ Association 91, 149–54.CrossRefGoogle Scholar
Bashkuev, AS (2013) New Mecoptera from the end-Permian intertrappean deposits of the Tunguska Basin. Russian Entomological Journal 22, 14.Google Scholar
Baud, A, Goudemand, N, Nützel, A, Brosse, M, Frisk, ÅM, Meier, M and Bucher, H (2015) Carbonate factory in the aftermath of end-Permian mass extinction: Griesbachian crinoidal limestones from Oman. Berichte des Institutes für Erdwissenschaften der Karl-Franzens-Universität Graz 21, 31.Google Scholar
Bauerfeind, E (2003) Ordnung Ephemeroptera, Eintagsfliegen. In Lehrbuch der Speziellen Zoologie. Band I: Wirbellose Tiere. Teil 5: Insecta (ed. Dathe, H), pp. 108–20. Heidelberg, Berlin: Spektrum Akademischer.Google Scholar
Bemis, WE and Lauder, GV (1986) Morphology and function of the feeding apparatus of the lungfish, Lepidosiren paradoxa (Dipnoi). Journal of Morphology 187, 81108.CrossRefGoogle Scholar
Benca, JP, Duijnstee, IAP and Looy, CV (2018) UV-B-induced forest sterility: implications of ozone shield failure in Earth’s largest extinction. Science Advances 4, e1700618, doi: 10.1126/sciadv.1700618.CrossRefGoogle ScholarPubMed
Benton, MJ and Newell, AJ (2014) Impacts of global warming on Permo-Triassic terrestrial ecosystems. Gondwana Research 25, 1308–37.CrossRefGoogle Scholar
Benton, MJ, Tverdokhlebov, VP and Surkov, MV (2004) Ecosystem remodelling among vertebrates at the Permian–Triassic boundary in Russia. Nature 432, 97100.CrossRefGoogle Scholar
Berg, LS (1941) Lower Triassic fishes of the Tunguska Coal Basin, Yenisei, Siberia. Bulletin of the Academy of Sciences of the USSR, Biological Sciences 1941, 458–74.Google Scholar
Bernardi, M, Petti, FM, Kustatscher, E, Franz, M, Hartkopf-Fröder, C, Labandeira, CC, Wappler, T, Van Konijnenburg-van Cittert, JHA, Peecook, BR and Angielczyk, KD (2017) Late Permian (Lopingian) terrestrial ecosystems: a global comparison with new data from the low-latitude Bletterbach Biota. Earth-Science Reviews 175, 1843.CrossRefGoogle Scholar
Berner, RA (1984) Sedimentary pyrite formation: an update. Geochimica et Cosmochimica Acta 48, 605–15.CrossRefGoogle Scholar
Betekhtina, OA, Mogutcheva, NK, Batyaeva, SK and Kushnarev, MP (1986) Granitsa permi i triasa v stratotipe mal’tsevskoy svity Kuzbassa [The Permian and Triassic boundary in the Mal’tsevo Formation stratotype of Kuzbass]. In Biostratigrafiya mezozoya Sibiri i Dal’nego Vostoka [Mesozoic Biostratigraphy of Siberia and the Far East] (eds Yanshin, AL and Dagis, AS), pp. 31–8. Trudy, Institut Geologii i Geofiziki, Sibirskoe Otdelenie, Akademiya Nauk SSSR 648. Novosibirsk: Nauka, Sibirskoe otdelenie [in Russian].Google Scholar
Błażejowski, B, Niedźwiedzki, G, Boukhalfa, K and Soussi, M (2017) Limulitella tejraensis, a new species of limulid (Chelicerata, Xiphosura) from the Middle Triassic of southern Tunisia (Saharan Platform). Journal of Paleontology 91, 960–7.CrossRefGoogle Scholar
Blomenkemper, P, Kerp, H, Hamad, AA, DiMichele, WA and Bomfleur, B (2018) A hidden cradle of plant evolution in Permian tropical lowlands. Science 362, 1414–6.CrossRefGoogle ScholarPubMed
Boeckelmann, K (1991) The Permian-Triassic of the Gartnerkofel-1 core and the Reppwand outcrop section (Carnic Alps, Austria). Abhandlungen der Geologischen Bundesanstalt 45, 1736.Google Scholar
Boomer, I, Frenzel, P and Feike, M (2016) Salinity-driven size variability in Cyprideis torosa (Ostracoda, Crustacea). Journal of Micropalaeontology 36, 63–9.CrossRefGoogle Scholar
Brayard, A, Vennin, E, Olivier, N, Bylund, KG, Jenks, J, Stephen, DA, Bucher, H, Hofmann, R, Goudemand, N and Escarguel, G (2011) Transient metazoan reefs in the aftermath of the end-Permian mass extinction. Nature Geoscience 4, 693–7.CrossRefGoogle Scholar
Brinkhurst, RO (1971) A guide for the identification of British aquatic Oligochaeta. Freshwater Biological Association Scientific Publication 22, 155.Google Scholar
Brönnimann, P and Zaninetti, L (1972) On the occurrence of the serpulid Spirorbis Daudin, 1800 (Annelida, Polychaeta, Sedentaria) in thin sections of Triassic rocks of Europe and Iran. Rivista Italiana di Paleontologia e Stratigrafia 78, 6790.Google Scholar
Budnikov, IV, Kutygin, RV, Shi, GR, Sivtchikov, VE and Krivenko, OV (2020) Permian stratigraphy and paleogeography of Central Siberia (Angaraland): a review. Journal of Asian Earth Sciences 196, 104365, doi: 10.1016/j.jseaes.104365.CrossRefGoogle Scholar
Burgess, SD and Bowring, SA (2015) High-precision geochronology confirms voluminous magmatism before, during, and after Earth’s most severe extinction. Science Advances 1, e1500470, doi: 10.1126/sciadv.1500470.CrossRefGoogle ScholarPubMed
Buslov, MM, Safonova, IYu, Fedoseev, GS, Reichow, MK, Davies, C and Babin, GA (2010) Permo-Triassic plume magmatism of the Kuznetsk Basin, Central Asia: geology, geochronology, and geochemistry. Russian Geology and Geophysics 51, 1021–36.CrossRefGoogle Scholar
Butts, SH and Briggs, DEG (2011) Silicification through time. In Taphonomy: Process and Bias Trough Time, 2nd edition (eds Allison, PA and Bottjer, DJ), pp. 411–34. Dordrecht, NL: Springer Science+Business Media B.V. Google Scholar
Calvert, SE (1974) Deposition and diagenesis of silica in marine sediments. In Pelagic Sediments on Land and Under the Sea (eds Hsü, KJ and Jenkyns, HC), pp. 273–99. International Association of Sedimentologists, Special Publication no. 1. Oxford: Blackwell Scientific Publications.Google Scholar
Caruso, JA and Tomescu, AMF (2012) Microconchid encrusters colonizing land plants: the earliest North American record from the Early Devonian of Wyoming, USA. Lethaia 45, 490–4.CrossRefGoogle Scholar
Chadwick, MA, Hunter, H, Feminella, JW and Henry, RP (2002) Salt and water balance in Hexagenia limbata (Ephemeroptera: Ephemeridae) when exposed to brackish water. Florida Entomologist 85, 650–1.CrossRefGoogle Scholar
Clement, AM and Long, JA (2010) Air-breathing adaptation in a marine Devonian lungfish. Biology Letters 6, 509–12.CrossRefGoogle Scholar
Clifton, RL (1942) Invertebrate faunas from the Blaine and the Dog Creek formations of the Permian Leonard Series. Journal of Paleontology 16, 685–99.Google Scholar
Cocks, LRM and Torsvik, TH (2007) Siberia, the wandering northern terrane, and its changing geography through the Palaeozoic. Earth-Science Reviews 82, 2974.CrossRefGoogle Scholar
Davies, C, Allen, MB, Buslov, MM and Safonova, I (2010) Deposition in the Kuznetsk Basin, Siberia: insights into the Permian-Triassic transition and the Mesozoic evolution of Central Asia. Palaeogeography, Palaeoclimatology, Palaeoecology 295, 307–22.CrossRefGoogle Scholar
Davydov, VI, Zharinova, VV and Silantiev, VV (2019) Late Permian and Early Triassic conchostracans from the Babii Kamen section (Kuznetsk Coal Basin). Uchenye Zapiski Kazanskogo Universiteta, Seriya Estestvennye Nauki 161, 339–47.CrossRefGoogle Scholar
De Deckker, P (1983) Notes on the ecology and distribution of non-marine ostracods in Australia. Hydrobiologia 106, 223–34.CrossRefGoogle Scholar
Dobruskina, IA (1994) Triassic Floras of Eurasia. Schriftenreihe der Erdwissenschaftlichen Kommissionen/Österreichische Akademie der Wissenschaften 10. Wien: Springer, 422 pp.Google Scholar
Durand, LZ and Goldstein, G (2001) Photosynthesis, photoinhibition, and nitrogen use efficiency in native and invasive tree ferns in Hawaii. Oecologia 126, 345–54.CrossRefGoogle ScholarPubMed
Efremov, IA (1939) First representative of Siberian early Tetrapoda. Comptes rendus de l’Académie des sciences de l’URSS 23, 106–10.Google Scholar
Elkins-Tanton, LT, Grasby, SE, Black, BA, Veselovskiy, RV, Ardakani, OH and Goodarzi, F (2020) Field evidence for coal combustion links the 252 Ma Siberian Traps with global carbon disruption. Geology 48, 986–91, doi: 10.1130/G47365.1.CrossRefGoogle Scholar
Erwin, DH (2006) Extinction! How Life Nearly Ended 250 Million Years Ago. Princeton: Princeton University Press, 296 pp.Google Scholar
Farabegoli, E, Perri, MC and Posenato, R (2007) Environmental and biotic changes across the Permian-Triassic boundary in western Tethys: the Bulla parastratotype, Italy. Global and Planetary Change 55, 109–35.CrossRefGoogle Scholar
Fedorenko, V and Czamanske, G (1997) Results of new field and geochemical studies of the volcanic and intrusive rocks of the Maymecha-Kotuy area, Siberian flood-basalt province, Russia. International Geology Review 39, 479531.CrossRefGoogle Scholar
Feng, X, Chen, Z-Q, Bottjer, DJ, Wu, S, Zhao, L, Xu, Y, Shi, GR, Huang, Y, Fang, Y and Tu, C (2019) Unusual shallow marine matground-adapted benthic biofacies from the Lower Triassic of northern Paleotethys: implications for biotic recovery following the end-Permian mass extinction. Earth-Science Reviews 189, 194219.CrossRefGoogle Scholar
Feng, Z, Wei, H, Guo, Y and Bomfleur, B (2018) A conifer-dominated Early Triassic flora from Southwest China. Science Bulletin 63, 1462–3.CrossRefGoogle Scholar
Foster, WJ, Danise, S, Sedlacek, A, Price, G, Hips, K and Twitchett, RJ (2015) Environmental controls on the post-Permian recovery of benthic tropical marine ecosystems in western Palaeotethys (Aggtelek Karst, Hungary). Palaeogeography, Palaeoclimatology, Palaeoecology 440, 374–94.CrossRefGoogle Scholar
Foster, WJ, Lehrmann, DJ, Yu, M, Ji, L and Martindale, RC (2018) Persistent environmental stress delayed the recovery of marine communities in the aftermath of the latest Permian mass extinction. Paleoceanography and Paleoclimatology 33, 338–53.CrossRefGoogle Scholar
Fraiser, ML (2011) Paleoecology of secondary tierers from Western Pangean tropical marine environments during the aftermath of the end-Permian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology 308, 181–9.CrossRefGoogle Scholar
Frederickson, JA and Cifelli, RL (2017) New Cretaceous lungfishes (Dipnoi, Ceratodontidae) from western North America. Journal of Paleontology 91, 146–61.CrossRefGoogle Scholar
Friesenbichler, E, Richoz, S, Baud, A, Krystyn, L, Sahakyan, L, Vardanyan, S, Peckmann, J, Reitner, J and Heindel, K (2018) Sponge-microbial build-ups from the lowermost Triassic Chanakhchi section in southern Armenia: microfacies and stable carbon isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology 490, 653–72.CrossRefGoogle Scholar
Fürsich, FT and Pan, Y (2016) Diagenesis of bivalves from Jurassic and Lower Cretaceous lacustrine deposits of northeastern China. Geological Magazine 153, 1737.CrossRefGoogle Scholar
Gall, J-C (1971) Faunes et paysages du Grès à Voltzia du Nord des Vosges. Essai paléoécologique sur le Buntsandstein supérieur. Mémores du Service de la Carte géologique d’Alsace et de Lorraine 34, 1318.Google Scholar
Gall, J-C and Grauvogel-Stamm, L (2005) The early Middle Triassic ‘Grès à Voltzia’ Formation of eastern France: a model of environmental refugium. Comptes Rendus Palevol 4, 637–52.CrossRefGoogle Scholar
Gierlowski-Kordesch, EH and Cassle, CF (2015) The ‘Spirorbis’ problem revisited: Sedimentology and biology of microconchids in marine-nonmarine transitions. Earth-Science Reviews 148, 209–27.CrossRefGoogle Scholar
Gierlowski-Kordesch, EH, Falcon-Lang, HJ and Cassle, CF (2016) Reply to comment on the paper of Gierlowski-Kordesch and Cassle “The ‘Spirorbis’ problem revisited: Sedimentology and biology of microconchids in marine — nonmarine transitions”. Earth-Science Reviews 152, 201–4.CrossRefGoogle Scholar
Glintzboeckel, C and Rabaté, J (1964) Microfaunes et Microfacies du Permo-Carbonifère du sud Tunisien. International Sedimentary Petrographical Series, no. 7. Leiden: EJ Brill, 108 pp.Google Scholar
Godbold, A, Schoepfer, S, Shen, S and Henderson, CM (2018) Precarious ephemeral refugia during the earliest Triassic. Geology 45, 607–10.CrossRefGoogle Scholar
Gomankov, AV (2005) Floral changes across the Permian-Triassic boundary. Stratigraphy and Geological Correlation 13, 7483.Google Scholar
Götz, G (1931) Bau und Biologie fossiler Serpuliden. Neues Jahrbuch für Mineralogie, Geologie und Paläontologie, Abhandlungen 65B, 385438.Google Scholar
Hagdorn, H (2010) Posthörnchen-Röhren aus Muschelkalk und Keuper. Fossilien 4/2010, 229–36.Google Scholar
Haig, DW, Martin, SK, Mory, AJ, McLoughlin, S, Backhouse, J, Berrell, RW, Kear, BP, Hall, R, Foster, CB, Shi, GR and Bevan, JC (2015) Early Triassic (early Olenekian) life in the interior of East Gondwana: mixed marine–terrestrial biota from the Kockatea Shale, Western Australia. Palaeogeography, Palaeoclimatology, Palaeoecology 417, 511–33.CrossRefGoogle Scholar
Hallam, A and Wignall, PB (1997) Mass Extinctions and Their Aftermath. Oxford: Oxford University Press, 328 pp.Google Scholar
Hannibal, JT and Shcherbakov, DE (2019) New tomiulid millepedes from the Triassic of European Russia and a re-evaluation of the type material of Tomiulus angulatus from the Permian of Siberia. In Proceedings of the 18th International Congress of Myriapodology, 25–31August 2019, Budapest, Hungary, Program and Abstracts (eds Dányi, L, Korsós, Z and Lazányi, E), p. 33. Budapest: Hungarian Natural History Museum; Hungarian Biological Society.Google Scholar
Harper, EM, Palmer, TJ and Alphey, JR (1997) Evolutionary respone of bivalves to changing Phanerozoic sea-water chemistry. Geological Magazine 134, 403–7.CrossRefGoogle Scholar
Hasiotis, ST, Mitchel, CE and Dubiel, RF (1993) Application of morphological burrow interpretations to discern continental burrow architects: Lungfish or crayfish? Ichnos 2, 315–33.CrossRefGoogle Scholar
He, L, Wang, Y, Woods, A, Li, G, Yang, H and Liao, W (2012) Calcareous tubeworms as disaster forms after the end-Permian mass extinction in South China. Palaios 27, 878–86.CrossRefGoogle Scholar
Heindel, K, Foster, WJ, Richoz, S, Birgel, D, Roden, VJ, Baud, A, Brandner, R, Krystyn, L, Mohtat, T, Koun, E, Twitchett, RJ, Reitner, J and Peckmann, J (2018) The formation of microbial-metazoan bioherms and biostromes following the latest Permian mass extinction. Gondwana Research 61, 187202.CrossRefGoogle Scholar
Hethke, M, Fürsich, FT, Jiang, B and Klaus, R (2013) Oxygen deficiency in Lake Sihetun; formation of the Lower Cretaceous Liaoning Fossillagerstätte (China). Journal of the Geological Society, London 170, 817–31.CrossRefGoogle Scholar
Hethke, M, Fürsich, FT, Jiang, B, Wang, B, Chellouche, P and Weeks, SC (2019) Ecological stasis in Spinicaudata (Crustacea, Branchiopoda)? Early Cretaceous clam shrimp of the Yixian Formation of north-east China occupied a broader realized ecological niche than extant members of the group. Palaeontology 62, 483513.CrossRefGoogle Scholar
Horne, DJ, Martens, K (1988) An assessment of the importance of resting eggs for the evolutionary success of Mesozoic non-marine cypridoidean Ostracoda (Crustacea). In Evolutionary and Ecological Aspects of Crustacean Diapause (eds Brendonck, L, De Meester, L and Hairston, N). Advances in Limnology 52, 549–61.Google Scholar
Huang, Y, Bond, DPG, Wang, Y, Wang, T, Yi, Z, Yuan, A, Jia, J and Su, Y (2019) Early Triassic microbialites from the Changxing Region of Zhejiang Province, South China. Journal of Palaeogeography 8, 22, doi: 10.1186/s42501-019-0039-1.CrossRefGoogle Scholar
Ivakhnenko, MF (1978) Urodeles from the Triassic and Jurassic of Soviet inner Asia. Paleontological Journal 12, 362–8.Google Scholar
Ivanov, AV, He, H, Yan, L, Ryabov, VV, Shevko, AY, Palesskii, SV and Nikolaeva, IV (2013) Siberian Traps large igneous province: evidence for two flood basalt pulses around the Permian-Triassic boundary and in the Middle Triassic, and contemporaneous granitic magmatism. Earth-Science Reviews 122, 5876.CrossRefGoogle Scholar
Jones, RM and Hillman, SS (1978) Salinity adaptation in the salamander Batrachoseps . Journal of Experimental Biology 76, 110.CrossRefGoogle Scholar
Karasev, E (2015) On small pinnate leaves of peltasperm pteridosperms from the Early Triassic of the Kuznetsk Basin (Mal’tsevo Formation, Babii Kamen locality). Botanica Pacifica 4, 131–6.Google Scholar
Karasev, E, Naumcheva, M, Arefiev, M and Golubev, V (2018) The Late Permian (Lopingian) and Early Triassic flora of the Moscow Syneclise. In Proceedings of Kazan Golovkinsky Stratigraphic Meeting, 2017: Advances in Devonian, Carboniferous and Permian Research: Stratigraphy, Environments, Climate and Resources (ed. Nurgaliev, D), pp. 144–54. Bologna: Filodiritto Publisher.Google Scholar
Kazakov, AM, Konstantinov, AG, Kurushin, NI, Mogutcheva, NK, Sobolev, ES, Fradkina, AF, Yadryonkin, AV, Devyatov, VP and Smirnov, LV (2002) Stratigraphy of Oil and Gas Basins of Siberia. Triassic System. Novosibirsk: Department GEO, Siberian Branch, Russian Academy of Sciences, 322 pp. [in Russian with extended English summary].Google Scholar
Kazansky, AYu, Metelkin, DV, Bragin, VYu and Kungurtsev, LV (2005) Paleomagnetism of the Permian-Triassic traps from the Kuznetsk Basin, southern Siberia. Russian Geology and Geophysics 46, 1089–102.Google Scholar
Kelber, K-P (1987) Spirorbidae (Polychaeta, Sedentaria) auf Pflanzen des Unteren Keupers – Ein Beitrag zur Phyto-Taphonomie. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 175, 261–94.Google Scholar
Kemp, A, Cavin, L and Guinot, G (2017) Evolutionary history of lungfishes with a new phylogeny of post-Devonian genera. Palaeogeography, Palaeoclimatology, Palaeoecology 471, 209–19.CrossRefGoogle Scholar
Kershaw, S, Crasquin, S, Li, Y, Collin, P-Y, Forel, M-B, Mu, X, Baud, A, Wang, Y, Xie, S, Maurer, F and Guo, L (2012) Microbialites and global environmental change across the Permian-Triassic boundary: a synthesis. Geobiology 10, 2547.CrossRefGoogle ScholarPubMed
Kietzke, KK (1989) Calcareous microfossils from the Triassic of southwestern United States. In Dawn of the Age of Dinosaurs in the American Southwest (eds Lucas, SG and Hunt, AP), pp. 223–32. Albuquerque: New Mexico Museum of Natural History.Google Scholar
Knight-Jones, EW (1951) Gregariousness and some other aspects of the setting behaviour of Spirorbis . Journal of Marine Biological Association of the United Kingdom 30, 201–22.CrossRefGoogle Scholar
Knoll, AH, Bambach, RK, Payne, JL, Pruss, S and Fischer, WW (2007) Paleophysiology and end-Permian mass extinction. Earth and Planetary Science Letters 256, 295313.CrossRefGoogle Scholar
Knyazev, YuG, Knyazeva, OYu, Snachev, VI, Zhdanov, AV, Karimov, TR, Aydarov, EM, Masagutov, RKh and Arslanova, ER (2013) Gosudarstvennaya geologicheskaya karta Rossiyskoy Federatsii, masshtab 1:1000000 (tret’e pokolenie), Seriya Ural’skaya, List N-40 – Ufa, Ob’yasnitel’naya zapiska [State Geological Map of the Russian Federation, Scale 1:1 000 000 (third issue), Urals Series, Sheet N-40 – Ufa, Explanatory Note]. Saint Petersburg: Kartograficheskaya fabrika VSEGEI, 512 pp. [in Russian].Google Scholar
Kozur, H and Weems, RE (2010) The biostratigraphic importance of conchostracans in the continental Triassic of the northern hemisphere. In The Triassic Timescale (ed. Lucas, SG), pp. 315417. Geological Society of London, Special Publication no. 334.Google Scholar
Krasnov, VI, Savitsky, VE, Tesakov, YuI and Khomentovsky, VV, eds (1982) Resheniya Vsesoyuznnogo soveshchaniya po razrabotke unifitsirovannykh stratigraficheskikh skhem dokembriya, paleozoya i chetvertichnoy sistemy Sredney Sibiri, chast’ II (sredniy i verkhniy paleozoy), 1979 g. [Resolutions of the All-Union Meeting on the Elaboration of Uniform Stratigraphic Charts on the Precambrian, Palaeozoic and Quaternary System of Middle Siberia, Part II (Middle and Upper Palaeozoic), 1979]. Leningrad: Mezhvedomstvennyy Stratigraficheskiy Komitet SSSR, 129 pp., 18 pls. [in Russian].Google Scholar
Krugovykh, VV (1987) Miospory triasa vulkanogennykh otlozheniy Tungusskoy sineklizy [Miospores from the Triassic volcanogenic strata of the Tunguska Syneclise]. In Boreal’nyy trias [Boreal Triassic] (ed. Dagis, AS), pp. 4857. Trudy, Institut Geologii i Geofiziki, Sibirskoe Otdelenie, Akademiya Nauk SSSR 689. Moscow: Nauka [in Russian].Google Scholar
Kukhtinov, DA (2017) Sensatsiya iz proshlogo veka [Sensation from the last century]. In Problemy paleoekologii i istoricheskoy geoekologii, Sbornik trudov Vserossiyskoy nauchnoy konferentsii, posvyashchennoy pamyati professora V.G. Ocheva [Problems of the Palaeoecology and Historical Geoecology, Collection of Papers of the All-Russian Scientific Conference Dedicated to the Memory of Professor V.G. Ochev] (eds Ivanov, AV, Novikov, IV and Yashkov, IA), pp. 189–90. Moscow: PIN RAN im. A.A. Borisyaka; Saratov: SGTU im. Yu.A. Gagarina [in Russian with English abstract].Google Scholar
Kukhtinov, DA and Neustrueva, IYu (1986) Stratigraficheskoe znachenie ostracod [Stratigraphic significance of ostracods]. In Parastratigraficheskie gruppy flory i fauny triasa [Parastratigraphic Groups of Triassic Floras and Faunas] (eds Oleynikov, AN and Zhamoyda, AI), pp. 162–70. Leningrad: Nedra [in Russian].Google Scholar
Kukhtinov, DA, Yaroshenko, OP, Shishkin, MA, Sennikov, AG, Minikh, AV, Minikh, MG, Tverdokhlebov, VP, Levina, VI, Prokhorova, NP and Voronkova, EA (2016) Analiz stratigraficheskoy skhemy triasovykh otlozheniy Prikaspiyskogo regiona. Ob’yasnitel’naya zapiska [Analysis of the Stratigraphic Chart of the Triassic Strata in the Peri-Caspian Region. Explanatory Note]. Moscow: FGBU VNIGNI, 36 pp. [in Russian].Google Scholar
Kustatscher, E, Franz, M, Heunisch, C, Reich, M and Wappler, T (2014) Floodplain habitats of braided river systems: depositional environment, flora and fauna of the Solling Formation (Buntsandstein, Lower Triassic) from Bremke and Fürstenberg (Germany). Palaeobiodiversity and Palaeoenvironments 94, 237–70.CrossRefGoogle Scholar
Labat, D, Goddéris, Y, Probst, JL and Guyot, JL (2004) Evidence for global runoff increase related to climate warming. Advances in Water Resources 27, 631–42.CrossRefGoogle Scholar
Lamsdell, JC (2016) Horseshoe crab phylogeny and independent colonizations of fresh water: ecological invasion as a driver for morphological innovation. Palaeontology 59, 181–94.CrossRefGoogle Scholar
Lau, KV, Maher, K, Altiner, D, Kelley, BM, Kump, LR, Lehrmann, DJ, Silva-Tamayo, JC, Weaver, KL, Yu, M and Payne, JL (2016) Marine anoxia and delayed Earth system recovery after the end-Permian extinction. Proceedings of the National Academy of Sciences of the United States of America 113, 2360–5.CrossRefGoogle ScholarPubMed
Lucas, SG, Krainer, K and Vachard, D (2015) The Lower Permian Huesco Group, Robledo Mountains, New Mexico (U.S.A.). In Carboniferous-Permian Transition in the Robledo Mountains, Southern New Mexico (eds Lucas, SG and DiMichele, WA), pp. 4395. New Mexico Museum of Natural History and Science, Bulletin no. 65.Google Scholar
Lyons, RP, Scholz, CA, Cohen, AS, King, JW, Brown, ET, Ivory, SJ, Johnson, TC, Deino, AL, Reinthal, PN, McGlue, MM and Blome, MW (2015) Continuous 1.3-million-year record of East African hydroclimate, and implications for patterns of evolution and biodiversity. Proceedings of the National Academy of Sciences of the United States of America 112, 15568–73.CrossRefGoogle ScholarPubMed
Manum, SB, Bose, MN and Sawyer, RT (1991) Clitellate cocoons in freshwater deposits since the Triassic. Zoologica Scripta 20, 347–66.CrossRefGoogle Scholar
Matsunaga, KKS and Tomescu, AMF (2017) An organismal concept for Sengelia radicans gen. et sp. nov. — morphology and natural history of an Early Devonian lycophyte. Annals of Botany 119, 1097–113.CrossRefGoogle ScholarPubMed
Mazaheri Johari, M and Ghasemi-Nejad, E (2017) Paleoenvironment, biostratigraphy and sequence stratigraphic studies of the Permian-Triassic boundary of the offshore Persian Gulf, Iran: using an integrated approach. Geopersia 7, 3554.Google Scholar
McGowan, AJ, Smith, AB and Taylor, PD (2009) Faunal diversity, heterogeneity and body size in the Early Triassic: testing post-extinction paradigms in the Virgin Limestone of Utah, USA. Australian Journal of Earth Sciences 56, 859–72.CrossRefGoogle Scholar
Minikh, MG and Minikh, AV (1997) Ichthyofaunal correlation of the Triassic deposits from the northern Cis-Caspian and southern Cis-Urals regions. Geodiversitas 19, 279–92.Google Scholar
Mogutcheva, NK (1987) Sravnitel’nyy analiz flory rannego triasa Sredney Sibiri (Comparative analysis of the Early Triassic flora from Middle Siberia). In Boreal’nyy trias [Boreal Triassic] (ed. Dagis, AS), pp. 20–6. Trudy, Institut Geologii i Geofiziki, Sibirskoe Otdelenie, Akademiya Nauk SSSR 689. Moscow: Nauka [in Russian].Google Scholar
Mogutcheva (Mogucheva), NK (2016) Flora from the Induan stage (Lower Triassic) of Middle Siberia. Stratigraphy and Geological Correlation 24, 252–66.CrossRefGoogle Scholar
Mogutcheva, NK and Krugovykh, VV (2009) New data on the stratigraphic chart for Triassic deposits in the Tunguska Syneclise and Kuznetsk Basin. Stratigraphy and Geological Correlation 17, 510–8.CrossRefGoogle Scholar
Moisan, P, Voigt, S, Schneider, JW and Kerp, H (2012) New fossil bryophytes from the Triassic Madygen Lagerstätte (SW Kyrgyzstan). Review of Palaeobotany and Palynology 187, 2937.CrossRefGoogle Scholar
Murchison, RI (1839) The Silurian System. London: Murray, 768 pp.Google Scholar
Nakrem, HA and Ernst, A (2008) Arcticoporidae fam. nov. (Bryozoa, Trepostomata) from the Lower Triassic of Ellesmere Island (Canada) with remarks on some other Triassic bryozoans. In 14th International Bryozoology Association Conference Volume. Special Publication Series, Virginia Museum (eds Winston, JE, Key, MM Jr and Hageman, SJ), pp. 143–52. Martinsville: Natural History Press.Google Scholar
Neuburg, MF (1936) K stratigrafii uglenosnykh otlozheniy Kuznetskogo basseyna [To the stratigraphy of coal-bearing deposits of the Kuznetsk Basin]. Izvestiya Akademii Nauk SSSR, Seriya Geologicheskaya 4, 469510 [in Russian with English abstract].Google Scholar
Neustrueva, IYu and Bogomazov, VM (1987) Triasovye ozera Kuznetskogo basseyna [Triassic lakes of the Kuznetsk Basin]. In Istoriya ozer pozdnego paleozoya i rannego mezozoya [Late Palaeozoic and Early Mesozoic Lake History] (eds Martinson, GG and Neustrueva, IYu), pp. 245–9. Leningrad: Nauka [in Russian].Google Scholar
Newell, ND (1940) Invertebrate fauna of the late Permian Whitehorse sandstone. Geological Society of America Bulletin 51, 261336.CrossRefGoogle Scholar
Nicholls, JL (1959) The volcanic eruption of Mt. Tarawera and Lake Rotomahana and effects on surrounding forests. New Zealand Journal of Forestry Science 8, 133–42.Google Scholar
Novikov, IV (2018) Rannetriasovye amfibii Vostochnoy Europy: evolyutsiya dominantnykh grupp i osobennosti smeny soobshchestv [Early Triassic amphibians of Eastern Europe: evolution of dominant groups and peculiarities of changing communities]. Trudy, Paleontologicheskiy Institut, Rossiyskaya Akademiya Nauk 296, 1358 [in Russian].Google Scholar
Nützel, A and Schulbert, C (2005) Facies of two important Early Triassic gastropod lagerstätten: implications for diversity patterns in the aftermath of the end-Permian mass extinction. Facies 51, 480500.CrossRefGoogle Scholar
Ochev, VG and Shishkin, MA (1989) On the principles of global correlation of the continental Triassic on the tetrapods. Acta Palaeontologica Polonica 34, 149–73.Google Scholar
Ochev, VG and Surkov, MV (2000) The history of excavation of Permo-Triassic vertebrates from Eastern Europe. In The Age of Dinosaurs in Russia and Mongolia (eds Benton, MJ, Shishkin, MA, Unwin, DM and Kurochkin, EN), pp. 116. Cambridge: Cambridge University Press.Google Scholar
Payne, JL and Clapham, ME (2012) End-Permian mass extinction in the oceans: an ancient analog for the twenty-first century? Annual Review of Earth and Planetary Sciences 40, 89111.CrossRefGoogle Scholar
Peryt, TM (1974) Spirorbid-algal stromatolites. Nature 249, 239–40.CrossRefGoogle Scholar
Ponomarenko, AG and Prokin, AA (2013) Paleontologicheskie dannye ob evolyutsii vodnykh zhestkokrylykh (Coleoptera) [Paleontological data on the evolution of water beetles (Coleoptera)]. In Gydroentomologiya v Rossii i sopredel’nykh stranakh: Materialy V Vserossiyskogo simpoziuma po amfibioticheskim i vodnym nasekomym [Hydroentomology in Russia and Adjacent Countries: Materials of the Fifth All-Russia Symposium on Amphibiotic and Aquatic Insects] (eds Prokin, AA, Petrov, PN, Zhavoronkova, OD and Tuzovskiy, PV), pp. 125–34. Yaroslavl: Filigran [in Russian].Google Scholar
Ponomarenko, AG and Volkov, AN (2013) Ademosynoides asiaticus Martynov, 1936, the earliest known member of an extant beetle family (Insecta, Coleoptera, Trachypachidae). Paleontological Journal 47, 601–6.CrossRefGoogle Scholar
Posenato, R (2009) Survival patterns of macrobenthic marine assemblages during the end-Permian mass extinction in the western Tethys (Dolomites, Italy). Palaeogeography, Palaeoclimatology, Palaeoecology 280, 150–67.CrossRefGoogle Scholar
Prinada, VD (1970) Iskopaemaya flora korvunchanskoy svity. Basseyn reki Nizhney Tunguski (Fossil Flora of the Korvunchan Formation. Nizhnyaya Tunguska River Basin). Moscow: Nauka, 78 pp. [in Russian].Google Scholar
Pruss, SB, Payne, JL and Bottjer, DJ (2007) Placunopsis bioherms: the first metazoan buildups following the end-Permian mass extinction. Palaios 22, 1723.CrossRefGoogle Scholar
Reichow, MK, Pringle, MS, Al’Mukhamedov, AI, Allen, MB, Andreichev, VL, Buslov, MM, Davies, CE, Fedoseev, GS, Fitton, JG, Inger, S, Medvedev, AYa, Mitchell, C, Puchkov, VN, Safonova, IYu, Scott, RA and Saunders, AD (2009) The timing and extent of the eruption of the Siberian Traps large igneous province: implications for the end-Permian environmental crisis. Earth and Planetary Science Letters 277, 920.CrossRefGoogle Scholar
Reinhardt, JW (1988) Uppermost Permian reefs and Permo-Triassic sedimentary facies from the southeastern margin of the Sichuan Basin, China. Facies 18, 231–88.CrossRefGoogle Scholar
Retallack, GJ, Veevers, JJ and Morante, R (1996) Coal gap between Permian-Triassic extinction and Middle Triassic recovery of peat-forming plants. Geological Society of America Bulletin 108, 195207.2.3.CO;2>CrossRefGoogle Scholar
Romanovskaya, GM, Tabachnikova, IP and Dryagina, LL (1973) K voprosu o granitse permi i triasa v Sredney Sibiri (po dannym palinologii) [To the problem of the Permian and Triassic boundary in Middle Siberia (on palynological data)]. In Palinologicheskiy metod v stratigrafii [Palynological Method in the Stratigraphy] (ed. Boytsova, EP), pp. 4059. Trudy, Vsesoyuznyy nauchno-issledovatel’skiy geologicheskiy institut, Novay seriya 195. Leningrad: VSEGEI [in Russian].Google Scholar
Ros-Franch, S, Márquez-Aliaga, A and Damborenea, SE (2014) Comprehensive database on Induan (Lower Triassic) to Sinemurian (Lower Jurassic) marine bivalve genera and their paleobiogeographic record. The University of Kansas Paleontological Contributions 8, 1219.Google Scholar
Sadovnikov, GN (2008) On the global stratotype section and point of the Triassic base. Stratigraphy and Geological Correlation 16, 3146.Google Scholar
Sadovnikov, GN (2015a) Paleoecological characterization of the Middle Siberian trappean plateau at the end of the period of its formation (near the Permian-Triassic boundary). Paleontological Journal 49, 8999.CrossRefGoogle Scholar
Sadovnikov, GN (2015b) Paleoecological characterization of the Middle Siberian trappean plateau during the middle period of its formation (terminal Permian). Paleontological Journal 49, 438–47.CrossRefGoogle Scholar
Sadovnikov, GN (2016) Evolution of the biome of the Middle Siberian trappean plateau. Paleontological Journal 50, 518–32.CrossRefGoogle Scholar
Sadovnikov, GN and Orlova, EF (1995) Novoe v stratigrafii permo-triasovoy vulkanogennoy tolshchi tsentral’noy chasti Tungusskoy sineklizy [New in the stratigraphy of the Permian-Triassic volcanogenic unit in the central area of the Tunguska Syneclise]. Stratigrafiya i Geologicheskaya Correlyatsiya 3, 3442 [in Russian].Google Scholar
Saks, VN, Gol’bert, AV, Dagis, AS, Mesezhnikov, MS and Shatskiy, SB, eds (1981) Resheniya 3-go Mezhvedomstvennogo regional’nogo stratigraficheskogo soveshchaniya po mezozoyu i kaynozoyu Sredney Sibiri, Novosibirsk, 1978 g [Resolutions of the 3d Interdepartmental Regional Stratigraphic Meeting on the Mesozoic and Cenozoic of Middle Siberia, Novosibirsk, 1978]. Novosibirsk: Mezhvedomstvennyy Stratigraficheskiy Komitet SSSR, 91 pp. [in Russian].Google Scholar
Salzburger, W, Van Bocxlaer, B and Cohen, AS (2014) Ecology and evolution of the African Great Lakes and their faunas. Annual Review of Ecology, Evolution and Systematics 45, 519–45.CrossRefGoogle Scholar
Sandberg, CA (1963) Spirorbal limestone in the Souris River(?) Formation of Late Devonian age at Cottonwood Canyon, Bighorn Mountains, Wyoming. United States Geological Survey Professional Paper 475-C, C146.Google Scholar
Sano, H and Nakashima, K (1997) Lowermost Triassic (Griesbachian) microbial bindstone-cementstone facies, southwest Japan. Facies 36, 124.CrossRefGoogle Scholar
Schäfer, A and Stapf, KRG (1978) Permian Saar-Nahe Basin and recent Lake Constance (Germany): two environments of lacustrine algal carbonates. In Modern and Ancient Lake Environments (eds Matter, A and Tucker, ME), pp. 83107. Special Publication of the International Association of Sedimentologists no. 2. Oxford: Blackwell.CrossRefGoogle Scholar
Schoch, RR, Werneburg, R and Voigt, S (2020) A Triassic stem-salamander from Kyrgyzstan and the origin of salamanders. Proceedings of the National Academy of Sciences of the United States of America 117, 11584–8.CrossRefGoogle ScholarPubMed
Schubert, JK and Bottjer, DJ (1992) Early Triassic stromatolites as post-mass extinction disaster forms. Geology 20, 883–6.2.3.CO;2>CrossRefGoogle Scholar
Schultze, H-P (2009) Interpretation of marine and freshwater paleoenvironments in Permo-Carboniferous deposits. Palaeogeography, Palaeoclimatology, Palaeoecology 281, 126–36.CrossRefGoogle Scholar
Schultze, H-P, Soler-Gijón, R, Hampe, O and Heward, A (2008) Vertebrates from the Gharif Formation, Lower Permian, of Oman. In Faunas and Palaeoenvironments of the Late Palaeozoic. Special Publication of 5th Symposium on Permo-Carboniferous Faunas and workshop: Interpretation of Marine and Freshwater Environments in Carboniferous and Permian Deposits (eds Štamberg, S and Zajíc, J), pp. 41–2. Hradci Králové: Muzeum vychodních Čech.Google Scholar
Sennikov, AG (2018) Lungfish (Dipnoi) burrows from the Triassic of the southern Cis-Urals. Paleontological Journal 52, 1408–11.CrossRefGoogle Scholar
Sennikov, AG and Novikov, IV (2018) On possible trophic adaptations of some Rhytidosteidae (Amphibia, Temnospondyli). Paleontological Journal 52, 1412–8.CrossRefGoogle Scholar
Sennikov, NV (2003) Ordovician events in Altai–Sayan–Kuznetsky and Tuva basins and their influence on the sedimentary facies and marine biota (Siberia, Russia). In Ordovician from the Andes (eds Albanesi, GI, Beresi, MS and Peralta, SH), pp. 461–5. INSUGEO Serie Correlación Geologica 17.Google Scholar
Shcherbakov, DE (2008a) On Permian and Triassic insect faunas in relation to biogeography and the Permian-Triassic crisis. Paleontological Journal 42, 1531.Google Scholar
Shcherbakov, DE (2008b) Madygen, Triassic Lagerstätte number one, before and after Sharov. Alavesia 2, 113–24.Google Scholar
Shcherbakov, DE (2008c) Insect recovery after the Permian/Triassic crisis. Alavesia 2, 125–31.Google Scholar
Shcherbakov, DE, Bashkuev, AS, Vasilenko, DV, Karasev, EV, Lukashevich, ED, Tarasenkova, MM, Strelnikova, OD and Felker, AS (2019) Novoe mestonakhozhdenie rannetriasovykh nasekomykh – Petropavlovka [A new locality of Early Triassic insects – Petropavlovka]. In Paleostrat-2019, Moskva, 28–30 yanvarya 2019 g., Programma i tezisy dokladov [Paleostrat-2019, Moscow, 28–30 January 2019, Programme and Abstracts] (ed. Alekseev, AS), pp. 68–9. Moscow: Palaeontological Institute RAS [in Russian].Google Scholar
Shcherbakov, DE, Kabanov, PB, Ponomarenko, AG and Esin, DN (2002) Novoe o faune i litologii mal’tsevskoy svity Kuzbassa [News on the fauna and lithology of the Mal’tsevo Formation in the Kuzbass]. In IV Vserossiyskaya konferentsiya paleontologiya i stratigrafiya permi i triasa Severnoy Evrazii, posvyashchennaya 50-letiyu nachala raskopok Ocherskogo mestonakhozhdeniya permskikh tetrapod, Moskva, 4–5 aprelya 2002 g. [IV All-Russian Conference Palaeontology and Stratigraphy of the Permian and Triassic in Northern Eurasia Devoted to the 50th Anniversary of the Beginning of the Ocher Permian Tetrapod Locality Excavation, Moscow, 4–5 April 2002] (eds Tatarinov, LP and Golubev, VK), pp. 100–1. Moscow: Palaeontological Institute RAS [in Russian].Google Scholar
Shcherbakov, DE, Timm, T, Tzetlin, AB, Vinn, O and Zhuravlev, AYu (2020) A probable oligochaete from an Early Triassic Lagerstätte of the southern Cis-Urals and its evolutionary implications. Acta Palaeontologica Polonica 65, 219–33.CrossRefGoogle Scholar
Shen, S-Z and Clapham, ME (2009) Wuchiapingian (Lopingian, Late Permian) brachiopods from the Episkopi Formation of Hydra Island, Greece. Palaeontology 52, 713–43.CrossRefGoogle Scholar
Shepherd, LD, Perrie, LR and Brownsey, PJ (2007) Fire and ice: volcanic and glacial impacts on the phylogeography of the New Zealand forest fern Asplenium hookerianum . Molecular Ecology 16, 4536–49.CrossRefGoogle ScholarPubMed
Shikama, T and Hirano, H (1969) On a serpulid species from the Lower Permian Sadong Series in the Republic of Korea. Science Reports of the Yokohama National University, Section II (Biological and Geological Sciences) 15, 53–9.Google Scholar
Shishkin, MA (1998) Tungussogyrinus – A relict neotenic dissorophoid (Amphibia, Temnospondyli) from the Permo-Triassic of Siberia. Paleontological Journal 32, 521–31.Google Scholar
Shishkin, MA, Ochev, VG, Lozovskii, VR and Novikov, IV (2000) Tetrapod biostratigraphy of the Triassic of Eastern Europe. In The Age of Dinosaurs in Russia and Mongolia (eds Benton, MJ, Shishkin, MA, Unwin, DM and Kurochkin, EN), pp. 120–39. Cambridge: Cambridge University Press.Google Scholar
Shishkin, MA, Ochev, VG, Tverdokhlebov, VP, Vergay, IF, Gomankov, AV, Kalandadze, NN, Leonova, EM, Lopato, AYu, Makarova, IS, Minikh, MG, Molostovskiy, EM, Novikov, IV and Sennikov, AG (1995) Biostratigrafiya kontinental’nogo triasa yuzhnogo Predural’ya [Biostratigraphy of the Continental Triassic in the Southern Cis-Urals]. Moscow: Nauka, 205 pp. [in Russian].Google Scholar
Sikstel’, TA (1960) O nalichii kontinental’nykh otlozheniy verkhney permi v Yuzhnoy Fergane [On the Presence of Upper Permian Continental Strata in Southern Fergana]. Trudy, Uzbekskoe Geologicheskoe Upravlenie 1, pp. 29–38. Moscow: Gosgeoltekhizdat [in Russian].Google Scholar
Silantiev, VV, Urazaeva, MN and Nurgalieva, NG (2020) Nemorskie dvustvorchatye mollyuski iz terminal’noy permi i nizhnego triasa Kuznetskogo basseyna [Non-marine bivalve molluscs from the terminal Permian and Lower Triassic of the Kuznetsk Basin]. In Paleostrat-2020, Moskva, 27–29 yanvarya 2020 g., Programma i tezisy dokladov [Paleostrat-2020, Moscow, 27–29 January 2020, Programme and Abstracts] (eds Alekseev, AS and Nazarova, VM), pp. 53–4. Moscow: Palaeontological Institute RAS [in Russian].Google Scholar
Sinitshenkova, ND (2013) New mayflies (Insecta: Ephemerida = Ephemeroptera) from the intertrappean deposits of the Tunguska Basin, Siberia. Paleontological Journal 47, 84–8.CrossRefGoogle Scholar
Sinitshenkova, ND, Marchal-Papier, F, Grauvogel-Stamm, L and Gall, J-C (2005) The Ephemeridea (Insecta) from the Grès à Voltzia (early Middle Triassic) of the Vosges (NE France). Paläontologische Zeitschrift 79/3, 377–97.CrossRefGoogle Scholar
Smith, DB (1994) Marine Permian of England. Geological Conservation Review Series, no. 8. London: Chapman and Hill, 205 pp.Google Scholar
Song, H, Tong, J, Wignall, PB, Luo, M, Tian, L, Song, H, Huang, Y and Chu, D (2016) Early Triassic disaster and opportunistic foraminifers in South China. Geological Magazine 153, 298315.CrossRefGoogle Scholar
Stapf, KRG (1971) Röhrentragende Spirorben (Polychaeta, Vermes) als Zeugen des sessilien Benthos aus dem pfälzischen Rotliegenden. Abhandlungen des Hessischen Landesamtes für Bodenforschung 60, 167–73.Google Scholar
Stevens, CH (1966) Paleoecologic implications of Early Permian fossil communities in eastern Nevada and western Utah. Geological Society of America Bulletin 77, 1121–30.CrossRefGoogle Scholar
Stiller, F (2000) Polychaeta (Annelida) from the Upper Anisian (Middle Triassic) of Qingyan, southwestern China. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 217, 245–66.CrossRefGoogle Scholar
Sudar, MN, Kolar-Jurkovšek, T, Nestell, GP, Jovanovic, D, Jurkovšek, B, Williams, J, Brookfield, M and Stebbins, A (2018) New results of macrofaunal and geochemical investigations in the Permian-Triassic boundary interval from the Jadar Block (NW Serbia). Geologica Carpathica 69, 169–86.CrossRefGoogle Scholar
Sun, Y, Joachimski, MM, Wignall, PB, Yan, C, Chen, Y, Jiang, H and Lai, X (2012) Lethally hot temperatures during the Early Triassic greenhouse. Science 338, 366–70.CrossRefGoogle ScholarPubMed
Svetlitskaya, TV and Nevolko, PA (2016) Late Permian-Early Triassic traps of the Kuznetsk Basin, Russia: geochemistry and petrogenesis in respect to an extension of the Siberian Large Igneous Province. Gondwana Research 39, 5776.CrossRefGoogle Scholar
Sytchevskaya, EK (1999) Freshwater fish fauna from the Triassic of Northen Asia. In Mesozoic Fishes 2 – Systematics and Fossil Record (eds Arratia, G and Schultze, H-P), pp. 445–68. München: Dr Friedrich Pfeil.Google Scholar
Taylor, PD (2016) Competition between encrusters on marine hard substrates and its fossil record. Palaeontology 59, 481–97.CrossRefGoogle Scholar
Taylor, PD and Vinn, O (2006) Convergent morphology in small spiral worm tubes (‘Spirorbis’) and its palaeoenvironmental implications. Journal of the Geological Society, London 163, 225–8.CrossRefGoogle Scholar
Taylor, PD, Vinn, O and Wilson, MA (2010) Evolution of biomineralisation in ‘lophophorates’. Special Papers in Palaeontology 84, 317–33.Google Scholar
Timms, BV and Richter, S (2002) A preliminary analysis of the conchostracans (Crustacea: Spinicaudata and Laevicaudata) of the middle Paroo catchment of the Australian arid-zone. Hydrobiologia 486, 239–47.CrossRefGoogle Scholar
Toomey, DF (1976) Paleosynecology of a Permian plant dominated marine community. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 152, 118.Google Scholar
Toomey, DF and Cys, JM (1977) Spirorbid/algal stromatolites, a probable marginal marine occurrence from the Lower Permian of New Mexico, USA. Neues Jahrbuch für Geologie und Paläontologie, Monatshshefte 1977/6, 331–42.Google Scholar
Tverdokhlebov, VP (1967) 9.20. Petropavlovka, Berezovy. In Putevoditel’ ekskursii po verhnepermskim i triasovym kontinental’nym obrazovaniyam yugo-vostoka Russkoy platformy i Priural’ya [Guidebook of the Excursion on Upper Permian and Triassic Continental Formations of the South-East of the Russian Platform and the Cis-Urals] (ed. Morozov, NS), pp. 109–48. Saratov: Saratovskiy Gosudarstvennyy Universitet imeni N.G. Chernyshevskogo; Orenburgskoe Geologicheskoe Upravlenie [in Russian].Google Scholar
Tverdokhlebov, VP (1987) Triasovye ozera Yuzhnogo Priural’ya [Triassic lakes of the southern Cis-Urals]. In Istoriya ozer pozdnego paleozoya i rannego mezozoya [Late Palaeozoic and Early Mesozoic Lake History] (eds Martinson, GG and Neustrueva, IYu), pp. 235–42. Leningrad: Nauka [in Russian].Google Scholar
Tverdokhlebov, VP, Surkov, MV and Tverdokhlebova, GI (2007) Kontinental’nye paleoekosistemy rubezha paleozoya i mezozoya. Postkrizisnyy etap. Stat’ya 4. Ranniy i sredniy trias, yugo-vostok Vostochno-Evropeyskoy platformy [Continental palaeoecosystems of the Palaeozoic and Mesozoic boundary. Post-crisis stage. Paper 4. The Early and Middle Triassic, the Southwest of the East-European Platform]. Izvestiya Vysshikh Uchebnykh Zavedeniy, Geologiya i Razvedka 2007, 311 [in Russian].Google Scholar
Tverdokhlebov, VP, Tverdokhlebova, GI, Minikh, AV, Surkov, MV and Benton, MJ (2005) Upper Permian vertebrates and their sedimentological context in the South Urals, Russia. Earth-Science Reviews 69, 2777.CrossRefGoogle Scholar
Tverdokhlebov, VP, Tverdokhlebova, GI, Surkov, MV and Benton, MJ (2003) Tetrapod localities from the Triassic of the SE of European Russia. Earth-Science Reviews 60, 166.CrossRefGoogle Scholar
Vachard, D, Gaillot, J, Vaslet, D and Le Nindre, Y-M (2005) Foraminifers and algae from the Khuff Formation (late Middle Permian-Early Triassic) of central Saudi Arabia. GeoArabia 10, 137–86.Google Scholar
van de Schootbrugge, B and Wignall, PB (2016) A tale of two extinctions: converging end-Permian and end-Triassic scenarios. Geological Magazine 153, 332–54.CrossRefGoogle Scholar
Vannier, J, Thiéry, A and Racheboeuf, PR (2003) Spinicaudatans and ostracods (Crustacea) from the Montceau Lagerstätte (Late Carboniferous, France): morphology and palaeoenvironmental significance. Palaeontology 46, 9991030.CrossRefGoogle Scholar
Vasil’eva, NL (1962) Razrez mal’tsevskoy serii po pravomu beregu r. Tomi u Bab’ego Kamnya v Kuznetskom basseyne [The Mal’tsevo Group section along the Tom’ R. right bank near Babiy Kamen’ in the Kuznetsk Basin]. In Materialy vtorogo soveshchaniya Sibirskoy tematicheskoy komissii po istorii uglenakopleniya na territorii Sibiri, Urala i Dal’nego Vostoka [Proceedings of Second Conference of the Siberian Special Commission on the Coal Accumulation History on the Territories of Siberia, the Urals and the Far East], 2, pp. 96100. Novosibirsk: Izdatel’stvo Sibirskogo otdeleniya, Akademiya nauk SSSR [in Russian].Google Scholar
Vaslet, D, Le Nindre, Y-M, Vachard, D, Broutin, J, Crasquin-Soleau, S, Berthelin, M, Gaillot, J, Halawani, M and Al-Husseini, M (2005) The Permian-Triassic Khuff Formation of central Saudi Arabia. GeoArabia 10, 77134.Google Scholar
Verschuren, D, Tibby, J, Sabbe, K and Roberts, N (2000) Effects of depth, salinity, and substrate on the invertebrate community of a fluctuating tropical lake. Ecology 81, 164–82.CrossRefGoogle Scholar
Vinn, O (2010) Adaptive strategies in the evolution of encrusting tentaculitoid tubeworms. Palaeogeography, Palaeoclimatology, Palaeoecology 292, 211–21.CrossRefGoogle Scholar
Vinn, O, ten Hove, HA and Mutvei, H (2008) On the tube ultrastructure and origin of calcification in sabellids (Annelida, Polychaeta). Palaeontology 51, 295301.CrossRefGoogle Scholar
Vladimirovich, VP, Lebedev, VM, Popov, YuN, Radchenko, GP and Shvedov, NA (1967) Stratigrafiya triasovykh otlozheniy Sredney Sibiri [Stratigraphy of Triassic strata in Middle Siberia]. In Stratigrafiya mezozoya i kaynozoya Sredney Sibiri [Mesozoic and Cenozoic Stratigraphy of Middle Siberia] (ed. Greyner, RN), pp. 730. Trudy, Institut Geologii i Geofiziki, Sibirskoe Otdelenie, Akademiya Nauk SSSR 648. Novosibirsk: Nauka, Sibirskoe otdelenie [in Russian].Google Scholar
Voigt, S, Buchwitz, M, Fischer, J, Kogan, I, Moisan, P, Schneider, JW, Spindler, F, Brosig, A, Preusse, M, Scholze, F and Linnemann, U (2017) Triassic life in an inland lake basin of the warm-temperate biome – the Madygen Lagerstätte (southwestern Kyrgyzstan, Central Asia). In Terrestrial Conservation Lagerstätten: Windows into the Evolution of Life on Land (eds Fraser, NC and Sues, H-D), pp. 65104. Edinburgh: Dunedin Academic Press.Google Scholar
Vossmerbäumer, H (1972) Neue Cephalopoden-Funde aus dem Wellenkalk Mainfrankens. Aufschluss 23, 240–52.Google Scholar
Wang, P, Huang, Y, Wang, C, Feng, Z and Huang, Q (2013) Pyrite morphology in the first member of the Late Cretaceous Qingshankou Formation, Songliao Basin, Northeast China. Palaeogeography, Palaeoclimatology, Palaeoecology 385, 125–36.CrossRefGoogle Scholar
Weedon, MJ (1991) Microstructure and affinity of the enigmatic Devonian tubular fossil Trypanopora . Lethaia 24, 223–7.CrossRefGoogle Scholar
Werneburg, R (2009) The Permotriassic branchiosaurid Tungussogyrinus Efremov, 1939 (Temnospondyli, Dissorophoidea) from Siberia restudied. Fossil Record 12, 105–20.CrossRefGoogle Scholar
West, RR, Miller, KB and Watney, WL (2010) The Permian System in Kansas. Kansas Geological Survey Bulletin 257, 182.Google Scholar
Wilson, MA, Vinn, O and Yancey, TE (2011) A new microconchid tubeworm from the Artinskian (Lower Permian) of central Texas, USA. Acta Palaeontologica Polonica 56, 785–91.CrossRefGoogle Scholar
Wood, R and Erwin, DH (2018) Innovation not recovery: dynamic redox promotes metazoan radiations. Biological Reviews 93, 863–73.CrossRefGoogle Scholar
Yan, EV, Beutel, RG and Lawrence, JF (2018) Whirling in the late Permian: ancestral Gyrinidae show early radiation of beetles before Permian-Triassic mass extinction. BMC Evolutionary Biology 18, 33, doi: 10.1186/s12862-018-1139-8.CrossRefGoogle ScholarPubMed
Yancey, TE and Stevens, CH (1981) Early Permian fossil communities in northeastern Nevada and northwestern Utah. In Communities of the Past (eds Gray, J, Boucot, AJ and Berry, WBN), pp. 243–69. Stroudsburg, PA: Hutchinson Ross Publishing Co.Google Scholar
Yang, H, Chen, Z-Q and Ou, W (2015a) Microconchids from microbialites near the Permian-Triassic boundary in the Zuodeng section, Baise area, Guanxi Zhuang Autonomous Region, South China and their paleoenvironmental implications. Journal of Earth Science 26, 157–65.CrossRefGoogle Scholar
Yang, H, Chen, Z-Q, Wang, Y, Ou, W, Liao, W and Mei, X (2015b) Palaeoecology of microconchids from microbialites near the Permian-Triassic boundary in South China. Lethaia 48, 497508.CrossRefGoogle Scholar
Zatoń, M, Grey, M and Vinn, O (2014a) Microconchid tubeworms (Class Tentaculita) from the Joggins Formation (Pennsylvanian), Nova Scotia, Canada. Canadian Journal of Earth Sciences 51, 669–76.CrossRefGoogle Scholar
Zatoń, M, Hagdorn, H and Borszcz, T (2014b) Microconchids of the species Microconchus valvatus (Münster in Goldfuss, 1831) from the Upper Muschelkalk (Middle Triassic) of Germany. Palaeobiodiversity and Palaeoenvironments 94, 453–61.CrossRefGoogle Scholar
Zatoń, M and Krawczyński, W (2011) Microconchid tubeworms across the upper Frasnian – lower Famennian interval in the Central Devonian Field, Russia. Palaeontology 54, 1455–73.CrossRefGoogle Scholar
Zatoń, M and Mazurek, D (2011) Microconchids–a little known group of fossil organisms and their occurrence in the Upper Carboniferous of the Upper Silesia. Przeglad Geologiczny 59, 157–62 [in Polish with English summary].Google Scholar
Zatoń, M, Niedźwiedzki, G, Blom, H and Kear, BP (2016a) Boreal earliest Triassic biotas elucidate globally depauperate hard substrate communities after the end-Permian mass extinction. Scientific Reports 6, 36345, doi: 10.1038/srep.36345.CrossRefGoogle ScholarPubMed
Zatoń, M, Niedźwiedzki, G, Rakociński, M, Blom, H and Kear, BP (2018) Earliest Triassic metazoan bioconstructions from East Greenland reveal a pioneering benthic community in the immediate aftermath of the end-Permian mass extinction. Global and Planetary Change 167, 8798.CrossRefGoogle Scholar
Zatoń, M and Olempska, E (2017) A family-level classification of the Order Microconchida (Class Tentaculita) and the description of two new microconchid genera. Historical Biology 29, 885–94.CrossRefGoogle Scholar
Zatoń, M and Peck, RL (2013) Morphology and palaeoecology of new, non-marine microconchid tubeworm from Lower Carboniferous (Upper Mississippian) of West Virginia, USA. Annales Societatis Geologorum Poloniae 83, 3750.Google Scholar
Zatoń, M, Taylor, PD and Vinn, O (2013) Early Triassic (Spathian) post-extinction microconchids from western Pangea. Journal of Paleontology 87, 159–65.CrossRefGoogle Scholar
Zatoń, M, Vinn, O and Tomescu, AMF (2012) Invasion of freshwater and variable marginal marine habitats by microconchid tubeworms – an evolutionary perspective. Geobios 45, 603–10.CrossRefGoogle Scholar
Zatoń, M, Wilson, MA and Vinn, O (2016b) Comments on the paper of Gierlowski-Kordesch and Cassle “The ‘Spirorbis’ problem revisited: Sedimentology and biology of microconchids in marine-nonmarine transition” [Earth-Science Reviews, 148 (2015): 209–227]. Earth-Science Reviews 152, 198200.CrossRefGoogle Scholar
Zavialova, NE, Gomankov, AV, Yaroshenko, OP and Rovnina, LV (2004) Morphology and ultrastructure of some monosaccate pollen grains of Cordaitina Samoilovich 1953 from the Permian of Russia. Acta Palaeobotanica 44, 335.Google Scholar
Zhang, R, Jiang, T, Tian, Y, Xie, S, Zhou, L, Li, Q and Jiao, N (2017) Volcanic ash stimulates growth of marine autotrophic and heterotrophic microorganisms. Geology 45, 679–82.Google Scholar
Żyła, D, Wegierek, P, Owocki, K and Niedźwiedzki, G (2013) Insects and crustaceans from the latest Early–early Middle Triassic of Poland. Palaeogeography, Palaeoclimatology, Palaeoecology 371, 136–44.Google Scholar