Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T07:53:54.888Z Has data issue: false hasContentIssue false

Detrital zircons and the interpretation of palaeogeography, with the Variscan Orogeny as an example

Published online by Cambridge University Press:  03 October 2019

W. Franke*
Affiliation:
Institut für Geowissenschaften der Goethe-Universität, Altenhöfer Allee 1, Frankfurt a. Main, Germany
L.R.M. Cocks
Affiliation:
Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
T.H. Torsvik
Affiliation:
Centre for Earth Evolution and Dynamics (CEED), University of Oslo, 0315 Oslo, Norway School of Geosciences, University of Witwatersrand, Johannesburg 2050, South Africa
*
Author for correspondence: W. Franke, Email: [email protected]

Abstract

Analysis of the distribution of detrital zircon grains is one of the few parameters by which Precambrian palaeogeography may be interpreted. However, the break-up of Pangea and the subsequent dispersal of some of its fragments around the Indian Ocean demonstrate that zircon analysis alone may be misleading, since zircons indicate their original derivation and not their subsequent plate-tectonic pathways. Based on analysis of Precambrian–Ordovician zircon distributions, the presence of microcontinents and separating oceans in the north Gondwanan realm has been rejected in favour of an undivided pre-Variscan continental northwards extension of Africa to include Iberia, Armorica and neighbouring southern European terranes, based on analysis of Precambrian–Ordovician zircon distribution. However, contrasting views, indicating the presence of three peri-Gondwanan oceans with complete Wilson cycles, are reinforced here by a critical reappraisal of the significance of that Variscan area detrital zircon record together with a comparison of the evolution of the present-day Indian Ocean, indicating that Iberia, Armorica and other terranes were each separate from the main Gondwanan craton during the early Palaeozoic Era.

Type
Discussion
Copyright
© Cambridge University Press 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahrendt, H, Büttner, A, Tischler, M and Wemmer, K (2001) K/Ar dating of detrital white micas and e Nd characteristics for provenance studies in the Saxothuringian Zone of the Variscides (Thuringia and Saxony, Germany). Zeitschrift der Deutschen Geologischen Gesellschaft 152, 351–63.Google Scholar
Ashwal, LD, Wiedenbeck, M and Torsvik, TH (2017) Archaean zircons in Miocene oceanic hotspot rocks establish ancient continental crust beneath Mauritius. Nature Communications 8, 14086, https://doi.org/10.1038/ncomms14086CrossRefGoogle ScholarPubMed
Ballèvre, M, Martínez Catalán, JR and López-Carmona, A (2014) Correlation of the nappe stack in the Ibero-Armorican Arc across the Bay of Biscay: a joint French- Spanish project. In The Variscan Orogeny: Extent, Timescale and Formation of the European Crust (eds Schulmann, K, Martínez, JR, Lardeaux, JM, Janoušek, V and Oggiano, G), pp. 77113. Geological Society of London, Special Publication no. 405, http://dx.doi.org/10.1144/SP405.13CrossRefGoogle Scholar
Eckelmann, K, Nesbor, HD, Königshof, P, Linnemann, U, Hofmann, M, Lange, JM and Sagawe, A (2014) Plate interactions of Laurussia and Gondwana during the formation of Pangaea – constraints from U-Pb LA-SF-ICP-MS detrital zircon ages of Devonian and Early Carboniferous siliciclastics of the Rhenohercynian zone, Central European Variscides. Gondwana Research 25, 484–500.CrossRefGoogle Scholar
Falk, F, Franke, W and Kurze, M (1995) Saxothuringian Basin. Autochthon and nonmetamorphic nappe units: stratigraphy. In Pre-Mesozoic Geology in France and Related Areas (ed Keppie, JD), pp. 219234. Berlin: Springer.Google Scholar
Feist, R, Echtler, H, Galtier, J and Mouthier, B (1994) Biostratigraphy and dynamics of the nonmetamorphic sedimentary record (Part III. The Massif Central). In Pre-Mesozoic Geology in France and Related Areas (ed Keppie, JD), pp. 289304. Berlin: Springer.CrossRefGoogle Scholar
Finger, F and Quadt, A von (1995) U/Pb ages of zircons from a plagiogranite-gneiss in the south-eastern Bohemian Massif, Austria - further evidence for an important early Paleozoic rifting episode in the eastern Variscides. Schweizer Mineralogische und Petrographische Mitteilungen 75, 265–70.Google Scholar
Fortey, RA and Cocks, LRM (2003) Palaeontological evidence bearing on global Ordovician-Silurian continental reconstructions. Gondwana Research 61, 245307.Google Scholar
Franke, W (2000) The Mid-European segment of the Variscides: tectono-stratigraphic units, terrane boundaries and plate tectonic evolution. In Orogenic Processes: Quantification and Modelling in the Variscan Belt (eds Franke, W, Haak, V, Oncken, O and Tanner, D), pp. 3561. Geological Society of London, Special Publication no. 179.CrossRefGoogle Scholar
Franke, W, Cocks, LRM and Torsvik, TH (2017) The Palaeozoic Variscan oceans revisited. Gondwana Research 48, 257–84.CrossRefGoogle Scholar
Franke, W and Dulce, J-C (2017) Back to sender: tectonic accretion and recycling of Baltica- derived clastic sediments in the Rheno-Hercynian Variscides. International Journal of Earth Sciences (Geologische Rundschau) 106, 377–86, http://dx.doi.org/10.1007/s00531-016-1408-yCrossRefGoogle Scholar
Franke, W, Huckriede, H, O´Sullivan, P and Wemmer, K (2019) Zircons to the front: accretionary history of the Rheno-Hercynian active margin (Variscides, Germany). Canadian Journal of Earth Sciences, to be published online December 2019, https://doi.org/10.1139/cjes-2018-0255CrossRefGoogle Scholar
García-Alcalde, JL, Carls, P, Pardo Alonso, MV, Sanz López, J, Soto, F, Truyols-Massoni, M and Valenzuela-Rios, JI (2002) Devonian. In The Geology of Spain (eds Gibbons, W and Moreno, MT), pp. 6791. London: Geological Society.CrossRefGoogle Scholar
Gutíerrez Marco, JC, Robardet, M, Rábano, I, Sarmiento, GN, San José Lancha, MA, Araújo, PH and Pieren Pidal, AP (2002) Ordovician. In The Geology of Spain (eds Gibbons, W and Moreno, MT), pp. 3149. London: Geological Society.CrossRefGoogle Scholar
Huckriede, H, Ahrendt, H and Wemmer, K (2002) Das K/Ar Abkühlungsalter der detritischen Muskovite des Nereiten-Sandsteins (Unterdevon, Thüringisches Schiefergebirge) und seine paläogeographische Bedeutung. Geowissenschaftliche Mitteilungen Thüringen 10, 15–9.Google Scholar
Huckriede, H, Wemmer, K and Ahrendt, H (2004) Palaeogeography and tectonic structure of allochthonous units in the German part of the Rheno-Hercynian Belt (Central European Variscides). International Journal of Earth Sciences (Geologische Rundschau) 93, 414–31.CrossRefGoogle Scholar
Kroner, A and Romer, RL (2013) Two plates – many subduction zones: the Variscan orogeny reconsidered. Gondwana Research 24, 298329.CrossRefGoogle Scholar
Kroner, U, Hahn, T, Romer, RL and Linnemann, U (2007) The Variscan orogeny in the Saxo- Thuringian Zone – heterogeneous overprint of Cadomian/Paleozoic Peri-Gondwana crust. Geological Society of America Special Paper 423, 153172.Google Scholar
Liñan, E, Gozalo, L, Palacios, T, Gámez Vintaned, JA, Ugidos, JM and Mayoral, E (2002) Cambrian. In The Geology of Spain (eds Gibbons, W and Moreno, MT), pp. 1729. London: Geological Society.CrossRefGoogle Scholar
Müller, RD, Gaina, C, Roest, WR and Hansen, DL (2001) A recipe for microcontinent formation. Geology 29, 203–6.2.0.CO;2>CrossRefGoogle Scholar
Neuroth, H (1997) K/Ar-Datierungen an detrtitischen Muskoviten – “Sicherungskopien” orogener Prozesse am Beispiel der Varisziden. Göttinger Arbeiten zur Geologie und Paläontologie 72, 143.Google Scholar
Porębski, SJ, Anczkiewicz, R, Paszkowski, M, Skompski, S, Kędzior, A, Mazur, S, Szczepański, J, Buniak, A and Mikołajewski, (2019) Hirnantian icebergs in the subtropical shelf of Baltica: evidence from sedimentology and detrital zircon provenance. Geology 47(3), 284–88, https://doi.org/10.1130/G45777.1CrossRefGoogle Scholar
Stephan, T, Kroner, U and Romer, RL (2018) The pre-orogenic detrital zircon record of the Peri-Gondwanan crust. Geological Magazine 156(2), 281307, https://doi.org/10.1017/S0016756818000031CrossRefGoogle Scholar
Stephan, T, Kroner, U, Romer, RL and Rösel, D (2019) From a bipartite Gondwanan shelf to an arcuate Variscan belt: the early Palaeozoic evolution of northern Peri-Gondwana. Earth-Science Reviews 192, 491512.CrossRefGoogle Scholar
Torsvik, TH, Amundsen, H, Hartz, E, Corfu, F, Kusznir, N, Gaina, C, Doubrovine, P, Steinberger, B, Ashwal, LD and Jamtveit, B (2013) A Precambrian microcontinent in the Indian Ocean. Nature Geoscience 6, 223–7.CrossRefGoogle Scholar
Torsvik, TH and Cocks, LRM (2017) Earth History and Palaeogeography. Cambridge: Cambridge University Press, 317 pp.CrossRefGoogle Scholar
Wilde, SA, Valley, JW, Peck, WH and Graham, CM (2001) Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409, 175–8.CrossRefGoogle ScholarPubMed
Žák, J and Sláma, J (2017) How far did the Cadomian ‘terranes’ travel from Gondwana during early Palaeozoic? A critical reappraisal based on detrital zircon geochronology. International Geology Review 60(3), 319–38, https://doi.org/10.1080/00206814.2017.1334599CrossRefGoogle Scholar