Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-19T23:52:10.087Z Has data issue: false hasContentIssue false

The depositional environments and tectonic development of a Mesozoic intra-arc basin, Atacama Region, Chile

Published online by Cambridge University Press:  01 May 2009

C. M. Bell
Affiliation:
Cheltenham and Gloucester College of Higher Education, Cheltenham GL50 2QF, U.K.
M. Suarez
Affiliation:
Servicio Nacional de Geologia y Minería, Avenida Santa Maria 0104, Santiago, Chile

Abstract

A thick succession of continental redbeds was deposited in a 50 km wide intra-arc basin on the Andean active continental margin in the Atacama region of northern Chile during early Cretaceous times. Upper Jurassic to early Cretaceous marine limestones were buried by the seaward progradation of a succession of coastal dunes, saline lakes and sandflats. Aeolian dune fields migrating towards the east across these coastal plains became stabilized by the growth of vegetation. Interdune alluvial areas between the sand dunes and dune fields developed into extensive alluvial braid plains which were in turn superimposed by alluvial fans. These fans were inundated by a regionally extensive saline lake produced by tectonic or volcanic damming of the sedimentary basin. This lake dried up leaving a large area of playa-lake mudflats. The climate was warm and semi-arid with a low and seasonal rainfall. Parts of the area supported a substantial vegetation of woody plants, together with a vertebrate fauna of dinosaurs, pterosaurs and crocodiles. The continental redbeds were derived from a volcanic source and were deposited on continental crust in a deep but narrow, north-south elongated, fault-bounded graben. This extensional basin formed in an intra-arc setting within an active andesitic volcanic chain. Upwards-coarsening sedimentary successions were the product of uplift of the fault-bounded margins of the basin.

Type
Articles
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlbrandt, T. S. & Fryberger, S. G. 1981. Sedimentary features and significance of interdune deposits. In Recent and Ancient Nonmarine Depositional environments: Models for Exploration (eds Etheridge, F. G. and Flores, R. M.), pp. 293314. Society of Economic Paleontologists and Mineralogists. Special Publication no. 31.CrossRefGoogle Scholar
Andrews, S. 1981. Sedimentology of Great Sand Dunes, Colorado. In Recent and Ancient Nonmarine Depositional Environments: Models for Exploration (eds Etheridge, F. G. and Flores, R. M.), pp. 279–91. Society of Economic Paleontologists and Mineralogists. Special Publication no. 31.CrossRefGoogle Scholar
Bell, C. M. 1987 a. The origin of the Upper Palaeozoic Chañaral mélange of N Chile Journal of the Geological Society, London 144 599610.CrossRefGoogle Scholar
Bell, C. M. 1987 b. The late Paleozoic evolution of the Gondwana continental margin in northern Chile. In Gondwana Six: Structure, Tectonics, and Geophysics (ed. McKenzie, G. D.), American Geophysical Union, Geophysical Monograph 40, pp. 261–71.Google Scholar
Bell, C. M. 1989. Saline lake carbonates within an Upper Jurassic-Lower Cretaceous continental redbed sequence in the Atacama Region of northern Chile Sedimentology 36, 651–63.CrossRefGoogle Scholar
Bell, C. M. 1991. The relationship between sedimentary structures, transport directions and dune types in Mesozoic aeolian sandstones, Atacama Region, Chile Sedimentology 38, 289300.CrossRefGoogle Scholar
Bell, C. M. & Suárez, M. 1989. Vertebrate fossils and trace fossils in Upper Jurassic-Lower Cretaceous red beds in the Atacama region, Chile Journal of South American Earth Sciences 2, 351–7.CrossRefGoogle Scholar
Blakey, R. C. & Middleton, L. T. 1983. Permian shoreline eolian complex in central Arizona: dune changes in response to cyclic sealevel changes. In Eolian Sediments and Processes (eds Brookfield, M. E. and Ahlbrandt, T. S.), pp. 551–81. Developments in Sedimentology vol. 38. Elsevier.CrossRefGoogle Scholar
Bull, W. B. 1972. Recognition of alluvial fan deposits in the stratigraphic record. In Recognition of Ancient Sedimentary Environments (eds Rigby, J. K. and Hamblin, W. K.), pp. 6383. Society of Economic Paleontologists and Mineralogists, Special Publication no. 16.Google Scholar
Chan, M. A. & Kocurek, G. 1988. Complexities in eolian and marine interactions: processes and eustatic controls on erg development Sedimentary Geology 56, 283300.CrossRefGoogle Scholar
Cisternas, M. E. 1977. Estudios geológicas del fianco occidental de la cordillera Claudio Gay: sector de La Ola, al sur de Pedernales (26° 30' S), III Region, Chile. Memoria de Titulo, Universidad de Chile, Departemento Geologico, Santiago.Google Scholar
Clemmensen, L. B. 1980. Triassic rift sedimentation and palaeogeography of central East Greenland. Grönlands Geologiske Undersogelse Bulletin 136.Google Scholar
Clemmensen, L. B. & Abrahamsen, K. 1983. Aeolian stratification and facies associations in desert sediments, Arran basin (Permian), Scotland Sedimentology 30, 311–39.CrossRefGoogle Scholar
Col, B., Davidson, J., Mpodozis, C. & Ramos, V. 1982. Tectonic and magmatic evolution of the Andes of Northern Argentina and Chile Earth-Science Reviews 18, 303–32.Google Scholar
Collinson, J. D. 1986. Deserts. In Sedimentary Environments and Facies Second Edition (ed. Reading, H. G.), pp. 95112. Blackwell Scientific Publications.Google Scholar
Covacevich, V. 1985. Nueva localidad para Myophorella (M.) hillebrandti (Reyes y Pérez) en el norte de Chile: significado cronológico y paleobiogeográfico Revista Geológica de Chile 24, 103–6.Google Scholar
Dalziel, I. W. D. 1986. Collision and cordilleran orogenesis: an Andean perspective. In Collision Tectonics (eds Coward, M. P. and Ries, A. C.), pp. 389404. Special Publication, Geological Society of London, no. 19.Google Scholar
Davidson, J. & Mpodozis, C. 1978. Geología de la Precordillera de Copiapó: las nacientes de la Quebrada Paipote al oeste del Salar de Maricunga. Cummunicaciones 23, Universidad de Santiago, Chile.Google Scholar
Frostick, L. E. & Reid, I. 1987. A new look at rifts Geology Today 3, 122–6.CrossRefGoogle Scholar
Fryberger, S. G., Ahlbrandt, T. S. & Andrews, S. 1979. Origin, sedimentary features, and significance of low-angle eolian “sand sheet” deposits, Great Sand Dunes National Monument and vicinity, Colorado Journal of Sedimentary Petrology 49, 733–46.CrossRefGoogle Scholar
Fryberger, S. G., al-Sari, A. M. & Clisham, T. J. 1983. Eolian dune, interdune, sandsheet and siliciclastic sebkha sediments of an offshore prograding sand sea, Dahran area, Saudi Arabia American Association of Petroleum Geologists Bulletin 67, 280312.Google Scholar
Fryberger, S. G., Schenk, C. J. & Krystinik, L. F. 1988. Stokes surfaces and the effects of near-surface groundwater-table on aeolian deposition Sedimentology 35, 2141.CrossRefGoogle Scholar
Garcia, F. 1967. Geología del Norte Grande de Chile. Sociedad Geológica de Chile. Simposium sobre el Geosinclinal Andino, 1962, 3.Google Scholar
Glennie, K. W. & Evamy, B. D. 1968. Dikaka: plants and plant-root structures associated with eolian sand Palaeogeography, Palaeoclimatology and Palaeoecology 23, 7787.CrossRefGoogle Scholar
Grove, A. T. 1969. Landforms and climatic change in the Kalahari and Ngamiland Geographical Journal 135, 191212.CrossRefGoogle Scholar
Hardie, L. A., Smoot, J. P. & Eugster, H. P. 1978. Saline lakes and their deposits: a sedimentological approach. In Modern and Ancient Lake Sediments (eds Matter, A. and Tucker, M. E.), pp. 741. International Association of Sedimentologists, Special Publication no. 2. Black-well Scientific Publications.CrossRefGoogle Scholar
Hervé, M. 1987. Movimiento sinistral en el Cretacico Inferior de la zona de falla Atacama al norte de Paposo (24° S), Chile Revista Geológica de Chile 31, 3742.Google Scholar
Hillebrandt, A. Von 1973. Neue Ergebnisse uber den Jura in Chile und Argentinien. Munster Forschung für Geologie und Palaontologie H31/32, 167–99.Google Scholar
Hooke, R. Le B. 1967. Processes on arid-region alluvial fans Journal of Geology 75, 438–60.CrossRefGoogle Scholar
Hunt, C. B., Robinson, T. W., Bowles, W. A. & Washburn, A. L. 1966. Hydrologic basin, Death Valley, California. Geological Survey Professional Paper no. 494–B. Washington: United States Government Printing Office.CrossRefGoogle Scholar
Ingersoll, R. V. 1988. Tectonics of sedimentary basins Geological Society of America Bulletin 100, 1704–19.2.3.CO;2>CrossRefGoogle Scholar
Kay, S. M., Ramos, V. A., Mpodozis, C. & Sruoga, P. 1989. Late Paleozoic to Jurassic silicic magmatism at the Gondwana margin: analogy to the Middle Proterozoic in North America? Geology 17, 324–8.2.3.CO;2>CrossRefGoogle Scholar
Kerb, D. R. & Dott, R. H. 1988. Eolian dune types preserved in the Tensleep Sandstone (Pennsylvanian-Permian), north-central Wyoming Sedimentary Geology 56, 383402.Google Scholar
Kocurek, G. 1981. Significance of interdune deposits and bounding surfaces in aeolian dune sands Sedimentology 28, 753–80.CrossRefGoogle Scholar
Kocurek, G. 1988. First-order and super bounding surfaces in eolian sequences-bounding surfaces revisited Sedimentary Geology 56, 193206.CrossRefGoogle Scholar
Kocurek, G. & Nielson, J. 1986. Conditions favourable for the formation of warm-climate aeolian sand sheets Sedimentology 33, 795816.CrossRefGoogle Scholar
Kokogian, D. A. & Mancilla, O. 1989. Análisis estratigráfico secuencial de la Cuenca Cuyana. In Cuencas sedimentarias Argentinas (eds Chebli, G. A. and Spalletti, L. A.). Universidad de Tucuman, Instituto Superior de Correlación Geologica, Argentina.Google Scholar
Langford, R. P. 1989. Fluvial-aeolian interactions: Part I, modern systems Sedimentology 36, 1023–35.CrossRefGoogle Scholar
Last, W. M. 1989. Sedimentology of a saline playa in the northern Great Plain, Canada Sedimentology 36, 109–23.CrossRefGoogle Scholar
Loope, D. B. 1988. Rhizoliths in ancient eolianites Sedimentary Geology 56, 301–14.CrossRefGoogle Scholar
Mabbutt, J. A. 1977. Desert Landforms. Massachusetts Institute of Technology Press.Google Scholar
Mabbutt, J. A. 1984. Landforms of the Australian deserts. In Deserts and Arid Lands (ed. el Baz, F.), pp. 7994. Martinus Nijhoff Publications.CrossRefGoogle Scholar
Maksaev, V. 1978. Cuadrángulo Chitigua y sector occidental del Cuadrángula Cerro Palpana, Region de Antofagasta. Instituto de Investigaciones Geológicas, Carta Geológica de Chile 31.Google Scholar
Marzoff, J. E. 1988. Controls on late Paleozoic and early Mesozoic eolian deposition of the western United States Sedimentary Geology 56 167–91.CrossRefGoogle Scholar
Mercado, M. 1982. Hoja Laguna del Negro Francisco. Servicio Nacional de Geologia y Minería, Carta Geológica de Chile 56.Google Scholar
Middleton, L. T. & Blakey, R. C. 1983. Processes and controls on the intertonguing of the Kayenta and Navajo Formations, Northern Arizona: eolian-fluvial interactions. In Eolian Sediments and Processes (eds Brookfield, M. E. and Ahlbrandt, T. S.), pp. 613–34. Developments in Sedimentology 38. Elsevier.CrossRefGoogle Scholar
Miller, M. M. 1989. Intra-arc sedimentation and tectonism: Late Paleozoic evolution of the eastern Klamath terrane, California Geological Society of America Bulletin 101, 170–87.2.3.CO;2>CrossRefGoogle Scholar
Mpodozis, C. & Ramos, V. 1989. The Andes of Chile and Argentina. In Geology of the Andes and its relation to hydrocarbon and mineral resources (eds Ericksen, G. E., Canas Pinochet, M. T. and Reinemund, J. A.), pp. 5989. Circum-Pacific Council for Energy and Mineral Resources, Earth Science Series Vol. 11.Google Scholar
Muzzio, G. 1980. Geologia de la region comprendida entre el cordón de Varillar y Sierra Las Viscachas, Precordillera de Atacama, Chile. Memoria de Título, Universidad de Chile, Departemento de Geología, Santiago.Google Scholar
Nance, H. S. 1988. Interfingering of evaporites and red beds: An example from the Queen/Grayburg formation, Texas Sedimentary Geology 56, 357–81.CrossRefGoogle Scholar
Naranjo, J. A. 1978. Geología de la zona interior de la Cordillera de la Costa entre los 26° 00' y 26° 20' Region de Atacama. Instituto de Investigaciones Geológicas, Carta Geológica de Chile 34.Google Scholar
Naranjo, J. A. & Puig, A. 1984. Hojas Taltal y Chañaral. Servicio Nacional de Geología y Minería, Carta Geológica de Chile 6263.Google Scholar
Orme, A. R. & Tchakerian, V. P. 1986. Quaternary dunes of the Pacific Coast of the Californias. In Aeolian Geomorphology (ed. Nickling, W. G.), pp. 149–75. Allen and Unwin.Google Scholar
Porter, M. L. 1987. Sedimentology of an ancient erg margin; the Lower Jurassic Aztec Sandstone, southern Nevada and southern California Sedimentology 34, 661–80.CrossRefGoogle Scholar
Ramos, V. A., Jordan, T. E., Allmendinger, R. W., Mpodozis, C., Kay, S. M., Cortes, J. M. & Palma, M. 1986. Paleozoic terranes of the central Argentine-Chilean Andes Tectonics 5, 855–80.CrossRefGoogle Scholar
Retallack, G. J. 1986. The fossil record of soils. In Paleosols: their recognition and interpretation (ed. Wright, P. V.), pp. 157. Princeton University Press.Google Scholar
Reyes, R. & Peréz, E. 1985. Myophorella (M.) Hillebrandti sp. nov. (Bivalvia, Trigoniidae) del Neocomiano, norte de Chile Revista Geológica de Chile 24, 93101.Google Scholar
Rust, B. R. 1978. Depositional models for braided alluvium. In Fluvial Sedimentology (ed. Miall, A. D.), pp. 605–25. Canadian Society of Petroleum Geologists Memoir no. 5.Google Scholar
Segerstrom, K. 1968. Geología de las hojas Copiapó y Ojos del Salado, Provincia de Atacama. Instituto de Investigaciones Geológicas, Chile, Boletin 24.Google Scholar
Sepulveda, P. & Naranjo, J. A. 1982. Hoja Carrera Pinto. Servicio Nacional de Geologia y Minería, Carta Geológica de Chile 53.Google Scholar
Steel, R. J. 1976. Devonian basins of western Norway-sedimentary response to tectonism and to varying tectonic context Tectonophysics 36, 207–24.CrossRefGoogle Scholar
Suárez, M. & Bell, C. M. 1986. Evidencias de actividad eólica en la Formation Quebrada Monardes (Jurásico-Cretácico Inferior) en la Precordillera de Copiapó, Chile. Revista Geológica de Chile 28–29, 103–7.Google Scholar
Suárez, M. & Bell, C. M. 1987. Upper Triassic to Lower Cretaceous continental and coastal saline lake evaporites in the Atacama Region of northern Chile Geological Magazine 124, 467–75.CrossRefGoogle Scholar
Suárez, M., Naranjo, J. A. & Puig, A. 1985. Estratigrafia de la Cordillera de la Costa, al sur de Taltal, Chile: etapas initiales del ciclo andino Revista Geológica de Chile 24, 1727.Google Scholar
Talbot, M. R. 1985. Major bounding surfaces in aeolian sandstones-a climatic model Sedimentology 32, 257–65.CrossRefGoogle Scholar
Tsoar, H. & Moller, J. T. 1986. The role of vegetation in the formation of linear sand dunes. In Aeolian Geomorphology (ed. Nickling, W. G.), pp. 7595. Allen and Unwin.Google Scholar
Uliana, M. A. & Biddle, K. T. 1988. Mesozoic-Cenozoic paleogeographic and geodynamic evolution of southern South America Revista Brasileira de Geociéncias 18, 172–90.CrossRefGoogle Scholar
Warren, J. K. & Kendall, C. G. St. C. 1985. Comparison of sequences formed in marine sabkha (subaerial) and saliva (subaqueous) settings-modern and ancient Bulletin of the American Association of Petroleum Geologists 69, 1013–23.Google Scholar
Watts, N. L. 1980. Quaternary pedogenic calcretes from the Kalahari (southern Africa)-mineralogy, genesis and diagenesis Sedimentology 27, 661–86.CrossRefGoogle Scholar
Williams, P. F. & Rust, B. R. 1969. The sedimentology of a braided river Journal of Sedimentary Petrology 39, 649–79.Google Scholar