Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-23T17:39:40.879Z Has data issue: false hasContentIssue false

Depositional changes during the Danian–Selandian transition in Loubieng (France), Zumaia (Spain) and Sidi Nasseur (Tunisia): insights from and limits of rock magnetism

Published online by Cambridge University Press:  03 May 2019

Sébastien Wouters*
Affiliation:
Liege University, Sedimentary Petrology, Boulevard du Rectorat, 15, B20, Sart-Tilman, 4000 Liège, Belgium Royal Belgian Institute of Natural Sciences, O.D. Earth and History of Life, 29 rue Vautier, 1000 Brussels, Belgium
Simo Spassov
Affiliation:
Royal Meteorological Institute of Belgium, Geophysical Centre, rue du Centre Physique, 1, 5670 Dourbes, Belgium
Mathieu Martinez
Affiliation:
Univ Rennes, CNRS, Géosciences Rennes, UMR 6118, 35000 Rennes, France
Etienne Steurbaut
Affiliation:
Royal Belgian Institute of Natural Sciences, O.D. Earth and History of Life, 29 rue Vautier, 1000 Brussels, Belgium KU Leuven, Department of Earth and Environmental Sciences, Celestijnenlaan 200E, 3001 Leuven, Belgium
Jean-Yves Storme
Affiliation:
University of Namur, Department of Geology, Institute of Life, Earth and Environment, ILEE, rue de Bruxelles 61, 5000 Namur, Belgium
Johan Yans
Affiliation:
University of Namur, Department of Geology, Institute of Life, Earth and Environment, ILEE, rue de Bruxelles 61, 5000 Namur, Belgium
Xavier Devleeschouwer
Affiliation:
Royal Belgian Institute of Natural Sciences, O.D. Earth and History of Life, 29 rue Vautier, 1000 Brussels, Belgium
*
*Author for correspondence: Sébastien Wouters, Email: [email protected]

Abstract

Depositional changes are studied in three sections encompassing the Danian–Selandian transition, Loubieng (France), Zumaia (Spain) and Sidi Nasseur (Tunisia), using magnetic susceptibility as a proxy. Additional rock-magnetic analyses are used to avoid ambiguous interpretation of magnetic susceptibility. The magnetic susceptibility, measured on 90 to 270 samples per section, is mainly controlled by paramagnetic minerals and linked to detrital input. Major increases in the detrital input are correlated to the end of the Latest Danian Event, a hyperthermal, and to the Danian–Selandian boundary. In Loubieng, two gradual increases in magnetic susceptibility within limestones beds precede the major detrital input increases, and start synchronously with the beginning of the Latest Danian Event and the onset of haematite deposition around the Danian–Selandian boundary, respectively. This haematite is suspected to be of primary origin based, among other things, on low magnetic viscosity values, which is used here as an indicator of diagenetic origin in haematite and goethite. The red levels where haematite is interpreted to be of primary origin could be linked to the hyperthermal event previously hypothesized for the basal Selandian. The comparison of the magnetic susceptibility, chemo- and biostratigraphic data between the three sections highlights the condensed nature of the sedimentation around the Danian–Selandian boundary in the sections of the Atlantic realm. The lower part of the Selandian shows a particularly low sedimentation rate at Zumaia compared to Loubieng and Sidi Nasseur. The latter displays the most complete record of the three.

Type
Original Article
Copyright
© Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrajevitch, A, der Voo, RV and Rea, DK (2009) Variations in relative abundances of goethite and hematite in Bengal Fan sediments: climatic vs. diagenetic signals. Marine Geology 267, 191206.CrossRefGoogle Scholar
Arenillas, I, Molina, E, Ortiz, S and Schmitz, B (2008) Foraminiferal and δ13C isotopic event-stratigraphy across the Danian–Selandian transition at Zumaya (northern Spain): chronostratigraphic implications. Terra Nova 20, 3844.CrossRefGoogle Scholar
Bernaola, G, Martín-Rubio, M and Baceta, JI (2009) New high resolution calcareous nannofossil analysis across the Danian/Selandian transition at the Zumaia Section: comparison with South Tethys and Danish sections. Geologica Acta 7, 7992.Google Scholar
Bornemann, A, Schulte, P, Sprong, J, Steurbaut, E, Youssef, M and Speijer, R (2009) Latest Danian carbon isotope anomaly and associated environmental change in the southern Tethys (Nile Basin, Egypt). Journal of the Geological Society, London 166, 1135–42.CrossRefGoogle Scholar
Bowles, J, Jackson, M and Banerjee, SK (2010) Interpretation of low-temperature data part II: the hematite Morin transition. IRM Quarterly 20, 810.Google Scholar
Da Silva, AC, De Vleeschouwer, D, Boulvain, F, Claeys, P, Fagel, N, Humblet, M, Mabille, C, Michel, J, Sardar Abadi, M, Pas, D and Dekkers, MJ (2013) Magnetic susceptibility as a high-resolution correlation tool and as a climatic proxy in Paleozoic rocks – merits and pitfalls: examples from the Devonian in Belgium. Marine and Petroleum Geology 46, 173–89.CrossRefGoogle Scholar
Dekkers, MJ (1989) Magnetic properties of natural goethite—II. TRM behaviour during thermal and alternating field demagnetization and low-temperature treatment. Geophysical Journal International 97, 341–55.CrossRefGoogle Scholar
Dekkers, MJ (2007) Magnetic proxy parameters. In Encyclopedia of Geomagnetism and Paleomagnetism (eds Gubbins, D and Herrero-Bervera, E), pp. 525–34. Dordrecht: Springer. CrossRefGoogle Scholar
Deprez, A, Jehle, S, Bornemann, A and Speijer, RP (2017) Pronounced biotic and environmental change across the latest Danian warming event (LDE) at Shatsky Rise, Pacific Ocean (ODP Site 1210). Marine Micropaleontology 137, 3145.CrossRefGoogle Scholar
De Vleeschouwer, D, Boulvain, F, Da Silva, A-C, Pas, D, Labaye, C and Claeys, P (2015) The astronomical calibration of the Givetian (Middle Devonian) timescale (Dinant Synclinorium, Belgium). In Magnetic Susceptibility Application: A Window onto Ancient Environments and Climatic Variations (eds Da Silva, AC, Whalen, MT, Hladil, J, Chadimova, L, Chen, D, Spassov, S, Boulvain, F and Devleeschouwer, X), pp. 245–56. Geological Society of London, Special Publication no. 414.Google Scholar
Devleeschouwer, X, Petitclerc, E, Spassov, S and Preat, A (2010) The Givetian–Frasnian boundary at Nismes parastratotype (Belgium): the magnetic susceptibility signal controlled by ferromagnetic minerals. Geologica Belgica 13/4, 351–66.Google Scholar
Devleeschouwer, X, Riquier, L, Bábek, O, De Vleeshouwer, D, Petitclerc, E, Sterckx, S and Spassov, S (2015) Magnetization carriers of grey to red deep-water limestones in the GSSP of the Givetian–Frasnian boundary (Puech de La Suque, France): signals influenced by moderate diagenetic overprinting. In Magnetic Susceptibility Application: A Window onto Ancient Environments and Climatic Variations (eds Da Silva, AC, Whalen, MT, Hladil, J, Chadimova, L, Chen, D, Spassov, S, Boulvain, F and Devleeschouwer, X), pp. 157–80. Geological Society of London, Special Publication no. 414.Google Scholar
Dinarès-Turell, J, Stoykova, K, Baceta, JI, Ivanov, M and Pujalte, V (2010) High-resolution intra- and interbasinal correlation of the Danian–Selandian transition (Early Paleocene): the Bjala section (Bulgaria) and the Selandian GSSP at Zumaia (Spain). Palaeogeography, Palaeoclimatology, Palaeoecology 297, 511–33.CrossRefGoogle Scholar
Dunlop, DJ (1973) Theory of the magnetic viscosity of lunar and terrestrial rocks. Review of Geophysics 11, 855901.CrossRefGoogle Scholar
Dunlop, DJ (2002) Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 1. Theoretical curves and tests using titanomagnetite data. Journal of Geophysical Research 107, EPM4-1–EPM4-22, doi: 10.1029/2001JB000486 Google Scholar
Ellwood, BB, Crick, RE and Hassani, AE (1999) The Magneto-Susceptibility Event and Cyclostratigraphy (MSEC) method used in geological correlation of Devonian rocks from Anti-Atlas Morocco. American Association of Petroleum Geologists Bulletin 83, 1119–34.Google Scholar
Evans, ME and Heller, F (2003) Environmental Magnetism: Principles and Applications of Enviromagnetics. Amsterdam: Academic Press.Google Scholar
Fabian, K and von Dobeneck, T (1997) Isothermal magnetization of samples with stable Preisach function: a survey of hysteresis, remanence, and rock magnetic parameters. Journal of Geophysical Research 102, 17659–77.CrossRefGoogle Scholar
Gheerbrant, E and Rage, J-C (2006) Paleobiogeography of Africa: how distinct from Gondwana and Laurasia? Palaeogeography, Palaeoclimatology, Palaeoecology 241, 224–46.CrossRefGoogle Scholar
Goddard, EN, Trask, PD, De Ford, RK, Rove, ON, Singewald, JT, Overbeck, J and Overbeck, RM (1948) Rock-Color Chart. Washington: National Research Council.Google Scholar
Guasti, E, Speijer, RP, Brinkhuis, H, Smit, J and Steurbaut, E (2006) Paleoenvironmental change at the Danian–Selandian transition in Tunisia: foraminifera, organic-walled dinoflagellate cyst and calcareous nannofossil records. Marine Micropaleontology 59, 210–29.CrossRefGoogle Scholar
Henry, J, Zolnaï, G, Le Pochat, G and Mondeilh, C (1989) Notice Explicative de la Feuille à 1/50000 Orthez. Orléans: Bureau de Recherches Géologiques et Minières, 55 pp.Google Scholar
Jackson, M and Swanson-Hysell, NL (2012) Rock magnetism of remagnetized carbonate rocks: another look. In Remagnetization and Chemical Alteration of Sedimentary Rocks (eds Elmore, RD, Muxworthy, AR, Aldana, MM and Mena, M), pp. 229–51. Geological Society of London, Special Publication no. 371.Google Scholar
Kodama, KP, Anastasio, DJ, Newton, ML, Pares, JM and Hinnov, LA (2010) High-resolution rock magnetic cyclostratigraphy in an Eocene flysch, Spanish Pyrenees. Geochemistry, Geophysics, Geosystems 11, Q0AA07, doi: 10.1029/2010GC003069. CrossRefGoogle Scholar
Kodama, KP and Hinnov, LA (2014) Rock Magnetic Cyclostratigraphy. Hoboken, NJ: John Wiley & Sons.CrossRefGoogle Scholar
Liu, Q, Torrent, J, Maher, BA, Yu, Y, Deng, C, Zhu, R and Zhao, X (2005) Quantifying grain size distribution of pedogenic magnetic particles in Chinese loess and its significance for pedogenesis. Journal of Geophysical Research 110, B11102, doi: 10.1029/2005JB003726 CrossRefGoogle Scholar
Martinez, M, Kotov, S, De Vleeschouwer, D, Pas, D and Pälike, H (2016) Testing the impact of stratigraphic uncertainty on spectral analyses of sedimentary series. Climate of the Past Discussions 12, 1765–83.CrossRefGoogle Scholar
Mayer, H and Appel, E (1999) Milankovitch cyclicity and rock-magnetic signatures of palaeoclimatic change in the Early Cretaceous Biancone Formation of the Southern Alps, Italy. Cretaceous Research 20, 189214.CrossRefGoogle Scholar
Moiroud, M, Martinez, M, Deconinck, J-F., Monna, F, Pellenard, P, Riquier, L and Company, M (2012) High-resolution clay mineralogy as a proxy for orbital tuning: example of the Hauterivian–Barremian transition in the Betic Cordillera (SE Spain). Sedimentary Geology 282, 336–46.CrossRefGoogle Scholar
Moskowitz, BM, Frankel, RB and Bazylinski, DA (1993) Rock magnetic criteria for the detection of biogenic magnetite. Earth and Planetary Science Letters 120, 283300.CrossRefGoogle Scholar
Mutterlose, J and Ruffell, A (1999) Milankovitch-scale palaeoclimate changes in pale–dark bedding rhythms from the Early Cretaceous (Hauterivian and Barremian) of eastern England and northern Germany. Palaeogeography, Palaeoclimatology, Palaeoecology 154, 133–60.10.1016/S0031-0182(99)00107-8CrossRefGoogle Scholar
Néel, L (1949) Théorie du traînage magnétique des ferromagnétiques en grains fins avec applications aux terres cuites. Annales Geophysicae 5, 99136.Google Scholar
Özdemir, Ö and Dunlop, DJ (1996) Thermoremanence and Néel temperature of goethite. Geophysical Research Letters 23, 921–4.CrossRefGoogle Scholar
Özdemir, Ö, Dunlop, DJ and Berquó, TS (2008) Morin transition in hematite: size dependence and thermal hysteresis. Geochemistry, Geophysics, Geosystems 9, Q10Z01, doi: 10.1029/2008GC002110. CrossRefGoogle Scholar
Peybernès, B, Fondecave-Wallez, M-J, Hottinger, L, Eichène, P and Segonzac, G (2000) Limite Crétacé–Tertiaire et biozonation micropaléontologique du Danien–Sélandien dans le Béarn occidental et la Haute-Soule (Pyrénées-Atlantiques). Geobios 33, 3548.CrossRefGoogle Scholar
Roberts, AP, Tauxe, L, Heslop, D, Zhao, X and Jiang, Z (2018) A critical appraisal of the “Day” diagram. Journal of Geophysical Research: Solid Earth 123, 2618–44.Google Scholar
Rocher, M, Lacombe, O, Angelier, J, Deffontaines, B and Verdier, F (2000) Cenozoic folding and faulting in the south Aquitaine Basin (France): insights from combined structural and paleostress analyses. Journal of Structural Geology 22, 627–45.CrossRefGoogle Scholar
Schmitz, B, Pujalte, V, Molina, E, Monechi, S, Orue-Etxebarria, X, Speijer, RP, Alegret, L, Apellaniz, E, Arenillas, I, Aubry, M-P, Baceta, J-I, Berggren, WA, Bernaola, G, Caballero, F, Clemmensen, A, Dinares-Turell, J, Dupuis, C, Heilmann-Clausen, C, Hilario Orus, A, Knox, R, Martin-Rubio, M, Ortiz, S, Payros, A, Petrizzo, MR, von Salis, K, Sprong, J, Steurbaut, E and Thomsen, E (2011) The Global Stratotype sections and points for the bases of the Selandian (Middle Paleocene) and Thanetian (Upper Paleocene) stages at Zumaia, Spain. Episodes 34, 220–43.CrossRefGoogle Scholar
Steurbaut, E and Sztrákos, K (2008) Danian/Selandian boundary criteria and North Sea Basin–Tethys correlations based on calcareous nannofossil and foraminiferal trends in SW France. Marine Micropaleontology 67, 129.CrossRefGoogle Scholar
Storme, J-Y, Steurbaut, E, Devleeschouwer, X, Dupuis, C, Iacumin, P, Rochez, G and Yans, J (2014) Integrated bio-chemostratigraphical correlations and climatic evolution across the Danian–Selandian boundary at low latitudes. Palaeogeography, Palaeoclimatology, Palaeoecology 414, 212–24.CrossRefGoogle Scholar
Van Itterbeeck, J, Sprong, J, Dupuis, C, Speijer, RP and Steurbaut, E (2007) Danian/Selandian boundary stratigraphy, paleoenvironment and Ostracoda from Sidi Nasseur, Tunisia. Marine Micropaleontology 62, 211–34.CrossRefGoogle Scholar
Varol, O (1989) Palaeocene calcareous nannofossil biostratigraphy. In Nannofossils and their Applications: Proceedings of the International Nannofossil Association Conference, London (eds Crux, JA and van Heck, SE), pp. 267310. British Micropalaeontological Society Series. Chichester: Ellis Horwood for the British Micropalaeontological Society.Google Scholar
Wang, X, Løvlie, R, Zhao, X, Yang, Z, Jiang, F and Wang, S (2010) Quantifying ultrafine pedogenic magnetic particles in Chinese loess by monitoring viscous decay of superparamagnetism. Geochemistry, Geophysics, Geosystems 11, Q10008, doi: 10.1029/2010GC003194. CrossRefGoogle Scholar
Westerhold, T, Röhl, U, Donner, B, McCarren, HC and Zachos, JC (2011) A complete high-resolution Paleocene benthic stable isotope record for the Central Pacific (ODP Site 1209). Paleoceanography 26, PA2216, doi: 10.1029/2010PA002092. CrossRefGoogle Scholar
Zwing, A, Matzka, J, Bachtadse, V and Soffel, HC (2005) Rock magnetic properties of remagnetized Palaeozoic clastic and carbonate rocks from the NE Rhenish massif, Germany. Geophysical Journal International 160, 477–86.CrossRefGoogle Scholar
Supplementary material: File

Wouters et al. supplementary material

Tables S1-S6

Download Wouters et al. supplementary material(File)
File 28.2 KB